有向图最小生成树

基础:无向图的kruskal算法

摘抄:

最 小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T,并且T中所有边的总权值最小。最小树形图的第一个算法是 1965年朱永津和刘振宏提出的复杂度为O(VE)的算法。

判断是否存在树形图的方法很简单,只需要以v为根作一次图的遍历就可以了,所以下面的 算法中不再考虑树形图不存在的情况。
在所有操作开始之前,我们需要把图中所有的自环全都清除。很明显,自环是不可能在任何一个树形图上的。只有进 行了这步操作,总算法复杂度才真正能保证是O(VE)。
首先为除根之外的每个点选定一条入边,这条入边一定要是所有入边中最小的。现在所有的最小 入边都选择出来了,如果这个入边集不存在有向环的话,我们可以证明这个集合就是该图的最小树形图。这个证明并不是很难。如果存在有向环的话,我们就要将这 个有向环所称一个人工顶点,同时改变图中边的权。假设某点u在该环上,并设这个环中指向u的边权是in[u],那么对于每条从u出发的边(u, i, w),在新图中连接(new, i, w)的边,其中new为新加的人工顶点; 对于每条进入u的边(i, u, w),在新图中建立边(i, new, w-in[u])的边。为什么入边的权要减去in[u],这个后面会解释,在这里先给出算法的步骤。然后可以证明,新图中最小树形图的权加上旧图中被收缩 的那个环的权和,就是原图中最小树形图的权。
上面结论也不做证明了。现在依据上面的结论,说明一下为什么出边的权不变,入边的权要减去in [u]。对于新图中的最小树形图T,设指向人工节点的边为e。将人工节点展开以后,e指向了一个环。假设原先e是指向u的,这个时候我们将环上指向u的边 in[u]删除,这样就得到了原图中的一个树形图。我们会发现,如果新图中e的权w'(e)是原图中e的权w(e)减去in[u]权的话,那么在我们删除 掉in[u],并且将e恢复为原图状态的时候,这个树形图的权仍然是新图树形图的权加环的权,而这个权值正是最小树形图的权值。所以在展开节点之后,我们 得到的仍然是最小树形图。逐步展开所有的人工节点,就会得到初始图的最小树形图了。

如果实现得很聪明的话,可以达到找最小入边O(E),找环 O(V),收缩O(E),其中在找环O(V)这里需要一点技巧。这样每次收缩的复杂度是O(E),然后最多会收缩几次呢?由于我们一开始已经拿掉了所有的 自环,我门可以知道每个环至少包含2个点,收缩成1个点之后,总点数减少了至少1。当整个图收缩到只有1个点的时候,最小树形图就不不用求了。所以我们最 多只会进行V-1次的收缩,所以总得复杂度自然是O(VE)了。由此可见,如果一开始不除去自环的话,理论复杂度会和自环的数目有关。

个人理解

kruskal跟 最小树形图 做个对比的话

前者 处理环时采用的是并查集 来判断,

后者 处理环 采用的是压缩点, 把一个环压成一个点,将环上所有边 所连的外边 和进入这个环的边 都连在这个点上 , 从 环向外的边 权值不变,从外向环的边 减去环中指向这条边的权值,建议画个图就很好理解了。

处理好环以后,没啥区别了,同样是连起了n-1个点,达到了最小树形图的目的

copy的一个图


实在不理解的话有个图形讲解:http://blog.csdn.net/shuangde800/article/details/8039359

模板如下:

#include <cstdio>
#include <iostream>
#include<queue>
#include<set>
#include<ctime>
#include<algorithm>
#include<cmath>
#include<vector>
#include<map>
#include<cstring>
using namespace std;
const double eps=1e-10;
#define M 109
#define type double 
const type inf=(1)<<30;
struct point 
{
	double x,y;
}p[M];
double dis(point a,point b)
{
	return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
struct Node{
	int u , v;
	type cost;
}E[M*M+5];
int pre[M],ID[M],vis[M];
type In[M];
int n,m; 
type Directed_MST(int root,int NV,int NE) {
	type ret = 0;
	while(true) {
		//1.找最小入边
		for(int i=0;i<NV;i++) In[i] = inf;
		for(int i=0;i<NE;i++){
			int u = E[i].u;
			int v = E[i].v;
			if(E[i].cost < In[v] && u != v) {
				pre[v] = u;
				In[v] = E[i].cost;
			}
		}
		for(int i=0;i<NV;i++) {
			if(i == root) continue;
			if(In[i] == inf)	return -1;//除了跟以外有点没有入边,则根无法到达它
		}
		//2.找环
		int cntnode = 0;
	memset(ID,-1,sizeof(ID));
	memset(vis,-1,sizeof(vis));
		In[root] = 0;
		for(int i=0;i<NV;i++) {//标记每个环
			ret += In[i];
			int v = i;
			while(vis[v] != i && ID[v] == -1 && v != root) {
				vis[v] = i;
				v = pre[v];
			}
			if(v != root && ID[v] == -1) {
				for(int u = pre[v] ; u != v ; u = pre[u]) {//外边与点做个标记,重新标记的时候连接
					ID[u] = cntnode;
				}
				ID[v] = cntnode ++;
			}
		}
		if(cntnode == 0)	break;//无环
		for(int i=0;i<NV;i++) if(ID[i] == -1) {
			ID[i] = cntnode ++;
		}
		//3.缩点,重新标记
		for(int i=0;i<NE;i++) {
			int v = E[i].v;
			E[i].u = ID[E[i].u];
			E[i].v = ID[E[i].v];
			if(E[i].u != E[i].v) {
				E[i].cost -= In[v];
			}
		}
		NV = cntnode;
		root = ID[root];
	}
	return ret;
}


int main()
{
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		// memset(pre,0,sizeof(pre));
		for(int i=0;i<n;i++)
		scanf("%lf%lf",&p[i].x,&p[i].y);
		for(int i=0;i<m;i++)
		{
		scanf("%d%d",&E[i].u,&E[i].v);
		E[i].u--;
		E[i].v--;
		if(E[i].u!=E[i].v)
		E[i].cost=dis(p[E[i].u],p[E[i].v]);
		else E[i].cost=1<<30;
		}
		type ans=Directed_MST(0,n,m);
		if(ans==-1)
		printf("poor snoopy\n");
		else 
		printf("%.2f\n",ans);
	}
	return 0;
}




  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值