Problem Description
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
Output
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
Sample Input
3 3
1 2 1
1 3 2
2 3 4
1 3
2 3 2
0 100
Sample Output
3
?
http://acm.hdu.edu.cn/showproblem.php?pid=1863
kruskal求最小生成树 并查集加排序 ,因为是路径压缩的并查集所以均摊的复杂度是常数,所以复杂度主要来自于排序。对于结构体排序写个重载运算符或者cmp函数即可。
```
#include<iostream>
#include<queue>
#include<algorithm>
#include<stack>
#include<string>
#include<cstring>
#include<vector>
#include<set>
#include<map>
#include<cstdio>
using namespace std;
typedef long long LL;
const int maxn = 100 + 10;
const int INF = 1E9;
struct edge
{
int from,to;
LL cost;
bool operator < (const edge &x) const
{
return cost <x.cost;
}
};
edge e[maxn*maxn];
int n,m;
int father[maxn];
void init()
{
for(int i =0;i<n;i++) father[i] = i;
}
int get_fa(int x)
{
if(father[x] == x) return x;
return father[x] = get_fa(father[x]);
}
void hebing(int x,int y)
{
int xx = get_fa(x);
int yy = get_fa(y);
if(xx==yy) return;
father[xx] = yy;
}
bool same(int x,int y)
{
return get_fa(x) == get_fa(y);
}
LL kruskal()
{
LL res = 0;
sort(e,e+m);
for(int i = 0;i<m;i++)
{
if(same(e[i].from,e[i].to)) continue;
hebing(e[i].from,e[i].to);
res += e[i].cost;
}
return res;
}
int main()
{
while(scanf("%d%d",&m,&n)!=EOF)
{
if(m==0) break;
init();
for(int i = 0;i<m;i++)
scanf("%d%d%lld",&e[i].from,&e[i].to,&e[i].cost);
LL res = kruskal();
for(int i =0;i<n;i++)
{
if(!same(i,0)) res = -1;
}
if(res == -1) printf("?\n");
else printf("%lld\n",res);
}
return 0;
}
prim解法,priority_queue优先队列(堆)加速的prim算法
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<stack>
#include<string>
#include<cstring>
#include<map>
#include<set>
#include<vector>
using namespace std;
typedef long long LL;
const int maxn = 100 + 10;
const int INF = 1E9;
int n,m;
struct edge{
int to;
LL cost;
edge(int tt,int cc):to(tt),cost(cc){}
edge(){}
bool operator <(const edge &s)const
{
return s.cost<cost;
}
};
vector<edge> g[maxn];
priority_queue<edge> q;
bool vis[maxn];
void init()
{
for(int i = 1;i<=m;i++) g[i].clear();
while(q.size()) q.pop();
memset(vis,false,sizeof(vis));
}
LL prim()
{
LL res = 0;
vis[1] = true;
for(int i=0;i<g[1].size();i++)
q.push(g[1][i]);
while(q.size())
{
edge s = q.top();
q.pop();
if(vis[s.to]) continue;
vis[s.to] = true;
res += s.cost;
for(int i=0;i<g[s.to].size();i++)
q.push(g[s.to][i]);
}
return res;
}
int main()
{
while(scanf("%d%d",&m,&n)!=EOF)
{
if(m==0) break;
init();
for(int i =1;i<=m;i++)
{
int u,v;
LL w;
scanf("%d%d%lld",&u,&v,&w);
g[u].push_back(edge(v,w));
g[v].push_back(edge(u,w));
}
LL res = prim();
for(int i = 1;i<=n;i++)
{
if(!vis[i]) res = -1;
}
if(res == -1) printf("?\n");
else printf("%lld\n",res);
}
return 0;
}