数学建模--数理统计

该博客探讨了数理统计在实际问题中的应用,包括计算灯泡寿命平均值的置信区间,估计环直径总体方差,以及检验装配时间和伊特拉斯坎人男子头颅宽度数据的正态分布性。通过对具体数据的分析,展示了如何利用统计方法进行假设检验和置信区间的构建。
摘要由CSDN通过智能技术生成

数理统计习题:


        [p,ci]=mle('norm',x,0.1)
        %均值和方差
        [h,sig,muci]=ztest(x,m,sigma,a,1)
        %用于测试在某一水平上是否可靠(均值和方差)
        [H,P,JBSTAT,CV]=jbtest(x);
        %是否满足正态分布
        [h,sig,ci] = ttest(x,a);
        %a是常数,验证均值是否为a
        %ci是置信区间
        [h,sig,ci] = ttest2(x,y);
        %这是对于2个参数,通常用于求价格差
        h = kstest(x,CDF,alpha,type)
        [h,p,ksstat,cv] = kstest(...)
        %KS检验正态分布,对于特定的方差和均值
        %[mu,sigma]=normfit(A);
        %p1=normcdf(A,mu,sigma);
        %[H1,s1]=kstest(A,[A,p1],alpha)


        %方差分析
        a = [41 65 45
        48 57 51
        41 54 56
        49 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值