62. 不同路径

62. 不同路径

题目

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
在这里插入图片描述
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?

例如,上图是一个7 x 3 的网格。有多少可能的路径?

说明:m 和 n 的值均不超过 100。

示例 1:

输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下
  2. 向右 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向右
    示例 2:

输入: m = 7, n = 3
输出: 28

解题

class Solution {
public:
    // version 1
    // int dp(int m,int n){
    //     if(m<0||n<0)return 0;
    //     if(m==0||n==0)return 1;
    //     return dp(m-1,n)+dp(m,n-1);
    // }
    // int uniquePaths(int m, int n) {
    //     int res=dp(m-1,n-1);
    //     return res;
    // }
    
//     version 2  
//     vector<vector<int>> d;
//     int dp(int m,int n){
//         if(m<0||n<0)return 0;
//         if(m==0||n==0)return 1;
//         if(d[m][n]!=0)return d[m][n];
//         else d[m][n]=dp(m-1,n)+dp(m,n-1);
//         return  d[m][n];
//     }
//     int uniquePaths(int m, int n) {
//         d=vector<vector<int>>(m,vector<int>(n,0));
        
//         int res=dp(m-1,n-1);
//         return res;
//     }
    
    int uniquePaths(int m, int n) {
        vector<int> prev(n,1);
        vector<int> next(n,1);
        for(int i=1;i<m;++i){
            for(int j=1;j<n;++j)
            {
                next[j]=next[j-1]+prev[j];
                prev[j]=next[j];
            }
        }
        return next[n-1];
    }
};
  • 三种方法循序渐进
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值