62. 不同路径
题目
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
说明:m 和 n 的值均不超过 100。
示例 1:
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向右 -> 向下
- 向右 -> 向下 -> 向右
- 向下 -> 向右 -> 向右
示例 2:
输入: m = 7, n = 3
输出: 28
解题
class Solution {
public:
// version 1
// int dp(int m,int n){
// if(m<0||n<0)return 0;
// if(m==0||n==0)return 1;
// return dp(m-1,n)+dp(m,n-1);
// }
// int uniquePaths(int m, int n) {
// int res=dp(m-1,n-1);
// return res;
// }
// version 2
// vector<vector<int>> d;
// int dp(int m,int n){
// if(m<0||n<0)return 0;
// if(m==0||n==0)return 1;
// if(d[m][n]!=0)return d[m][n];
// else d[m][n]=dp(m-1,n)+dp(m,n-1);
// return d[m][n];
// }
// int uniquePaths(int m, int n) {
// d=vector<vector<int>>(m,vector<int>(n,0));
// int res=dp(m-1,n-1);
// return res;
// }
int uniquePaths(int m, int n) {
vector<int> prev(n,1);
vector<int> next(n,1);
for(int i=1;i<m;++i){
for(int j=1;j<n;++j)
{
next[j]=next[j-1]+prev[j];
prev[j]=next[j];
}
}
return next[n-1];
}
};
- 三种方法循序渐进