- 博客(25)
- 收藏
- 关注
原创 图像降噪:Scale-Space and Edge Detection Using Anisotropic Diffusion
Scale-Space and Edge Detection Using Anisotropic Diffusion文章目录Scale-Space and Edge Detection Using Anisotropic DiffusionPhysical background of diffusion processesLinear diffusion filteringNonlinear Diffusion FilteringPhysical background of diffusion proc
2021-08-28 17:38:03 1287 2
原创 偏微分方程1-常微分方程求解方法回顾
常微分方程求解方法回顾文章目录常微分方程求解方法回顾一阶常微分方程(First Order Ordinary Differential Equations)二阶常系数线性微分方程(Second Order Constant Coefficient Linear Equations)在微分方程中,称只有一个自变量函数的微分方程为常微分方程,有两个及以上自变量的微分方程为偏微分方程,给定微分方程及其初始条件,称为初值问题,给定微分方程及其边界条件,称为边值问题。一阶常微分方程(First Order Or
2021-08-27 00:07:49 1259
原创 颜色外貌模型:心理物理学基础
Color Appearance Models:Psychophysics文章目录Color Appearance Models:PsychophysicsPsychophysics DefinedWeber’s WorkFechner’s WorkStevens’ WorkHierarchy of Scales理解色貌模型的基础是理解人类视觉系统,心理物理学(Psychophysics)为我们认知人类的视觉现象提供了基础,为了充分理解色貌模型,也为了更深入的了解人眼视觉系统,了解心理物理学的基础知识是
2021-08-24 23:07:58 746
原创 图像合成:Multi-scale Image Harmonization
Multi-scale Image Harmonization文章目录Multi-scale Image HarmonizationOverviewSmooth Histogram MatchingStructure and Noise MatchingPyramid compositing在图像合成、拼接、纹理合成等图像处理应用场景中,不仅仅是需要实现背景图像内容间的无缝融合,还需要保证合成图像真实性,前面提到的泊松融合仅考虑到了图像在融合区域梯度场的约束,能很好的融合背景图像和前景图像的图像内容,但
2021-08-22 22:11:55 1594 1
原创 纹理合成:Pyramid-Based Texture Analysis/Synthesis
Pyramid-Based Texture Analysis/Synthesis文章目录Pyramid-Based Texture Analysis/SynthesisSteerable PyramidHistogram Matching受视觉感知理论的启发,Heeger和Bergen提出一种基于金字塔的图像纹理合成技术,着重与随机纹理的合成(与随机纹理对应的是确定性纹理),此技术的优势是只需要给定目标纹理,不需要更多额外信息即可自动完成目标纹理的合成,关于纹理方面的更多内容可以阅读Human Text
2021-08-21 22:25:21 1201
原创 泊松融合:Poisson Image Editing
Poisson Image Editing文章目录Poisson Image EditingPoisson solution to guided interpolationSeamless cloning前面的文章详细地解读了抠图方面的论文Poisson Matting,接下来将解读与泊松抠图互为逆过程的泊松融合算法,与泊松抠图一样,泊松融合的核心也是对满足狄利克雷边界的泊松方程的求解。Poisson solution to guided interpolation如下图所示,首先我们定义插值问题:
2021-08-19 22:35:45 1554
原创 泊松抠图:Poisson Matting
Poisson Matting文章目录Poisson MattingGlobal Poisson mattingLocal Poisson matting泊松抠图是著名的交互式抠图算法,已经被广泛应用于图像处理的各个领域当中。Global Poisson matting抠图即是从复杂场景中精准的抠出目标物体用于后续处理,将抠图问题做如下数学定义:I=αF+(1−α)B(1)I=\alpha F+(1-\alpha) B\tag{1}I=αF+(1−α)B(1)将图像I(x,y)I(x,y)I
2021-08-18 23:22:52 1107
原创 偏振图像传感器
偏振图像传感器(Polarization Image Sensor)文章目录偏振图像传感器(Polarization Image Sensor)光的电磁波属性光的粒子性光的波动性光的偏振偏振片产生的偏振反射与折射带来的偏振偏振光的应用应力检测减少反射增强对比刮痕检测偏振图像传感器光的电磁波属性光的粒子性光是由光子组成:E=hvE=hvE=hvEEE为光子的能量;hhh为普朗克常数;vvv为光的频率。光波传播的能量是由许多单个光子组成的光子流的能量。光的波动性①光的干涉当频率相同、振动方
2021-08-15 17:25:17 2587
原创 噪声:Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise
Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise文章目录Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noisegeneralized Anscombe transformationExact Unbiased Inverse TransformationLow-C
2021-08-11 22:33:41 1230 1
原创 色调映射:iCAM06: A refifined image appearance model for HDR image rendering
iCAM06: A refifined image appearance model for HDR image renderingMark D Fairchild是图像颜色方面的大家,虽然不是本篇论文的第一作者,但他对色貌模型的发展有着举足轻重的作用,他在图像颜色处理方面的论文可以参见MDF,之后在关于图像颜色方面的论文中也会对这个List中比较重要的论文进行解读。色貌模型在1997年被CIE技术委员会所采纳 为CIECAM97s标准的原文,发展至当前在图像处理领域被广泛应用是iCAM06经历了多次的迭
2021-08-08 19:53:14 1440 1
原创 颜色外观模型:人眼视觉理论基础
Color Appearance Models:Human Color Vison在不同观察条件下,人眼感知到目标颜色是不同的,并且会随着观察条件改变而变换,即使是在同一观察条件下,人眼对同一颜色刺激的观测也会由于其所在的空间位置受到周围像素的影响而发生色貌变化,这种颜色刺激周围其他刺激影响的空间分布现象即色貌现象,基于色貌现象的色貌模型已经在印刷、显示、高动态范围压缩等领域得到了广泛的应用。Mark D Fairchild是图色貌模型方面的大家,对色貌模型的发展有着举足轻重的作用,《Color Appe
2021-08-08 12:09:44 3407
原创 噪声:Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data
Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data文章目录Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-dataPoissonian-Gaussian ModelingThe Noise Profile AlgorithmWavelet domain analysisSegmentat
2021-08-01 22:38:57 2663 1
原创 图像降噪:Kernel Regression for Image Processing and Reconstruction
Kernel Regression for Image Processing and Reconstruction文章目录Kernel Regression for Image Processing and Reconstruction回归经典核回归数据自适应的核回归本篇论文是一个基于核回归的图像处理框架,其所提出的核回归方法在图像降噪、融合、超分辨等领域均有广泛应用。本篇论文是Hiroyuki Takeda的博士论文,是对其前后发表的多篇关于核回归的总结:《Image denoising by ada
2021-07-28 23:16:06 1023 2
原创 图像对齐:MeshFlow: Minimum Latency Online Video Stabilization
MeshFlow: Minimum Latency Online Video Stabilization文章目录MeshFlow: Minimum Latency Online Video StabilizationFAST FeaturesTrack by KLT1D Case2D CaseRANSACMeanFlowMotion PropagationMedian FiltersVertex Profiles GenerationRobust EstimationPredicted Adaptive
2021-07-28 21:56:06 2267
原创 图像对齐:Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization
Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization文章目录Parametric Image Alignment Using Enhanced Correlation Coefficient MaximizationProblem FormulationProposed Criterion and Main ResultsVectorizationPerformance Measure Optimiza
2021-07-28 21:44:26 2215 1
原创 HDR:Recovering High Dynamic Range Radiance Maps from Photographs
Recovering High Dynamic Range Radiance Maps from Photographs本文以胶片为例,提出了通过多帧非线性RGB图像重建线性的高动态范围图像(High Dynamic Range Image),之后在这篇文章的基础上延伸出来众多标定数码相机的相机响应曲线(Camera Response Funstion)来重建线性的高动态范围图像方法,本文算法计算相机响应曲线的开山之作。文章目录Recovering High Dynamic Range Radiance
2021-07-25 02:03:13 1977
原创 图像融合:Gradient-directed Composition of Multi-exposure Images
Gradient-directed Composition of Multi-exposure Images文章目录Gradient-directed Composition of Multi-exposure ImagesVisibility AssessmentConsistency AssessmentSeamless Composition这篇文章是一个简单的用Alpha Blending做图像融合的方法,并且尝试用判断梯度方向变化的方法来避免动态场景融合产生的鬼影。图像梯度在多曝光图像融合过
2021-07-18 17:06:41 556
原创 图像融合:Exposure Fusion Using Boosting Laplacian Pyramid
Exposure Fusion Using Boosting Laplacian Pyramid文章目录Exposure Fusion Using Boosting Laplacian PyramidJND ModelLuminance AdaptationContrast MaskingOverall JND ModelA Hybrid Exposure Weight MeasurementLocal Exposure WeightGlobal Exposure WeightJND-Based Sali
2021-07-18 17:02:00 1081 4
原创 色调映射:Edge-Preserving Decompositions for Multi-Scale Tone and Detail Manipulation
Edge-Preserving Decompositions for Multi-Scale Tone and Detail Manipulation 目前在传统Tone Mapping这个领域,我个人根据看过的Paper将其分类为Retinex、HVS、Gradient Domain,其中Retinex相比常见的SSR(Single Scale Retinex)、MSR(Multi Scale Retine),在Tone Mapping中的Retinex泛指一切使用到低通滤波器将图像分解为基础层(B
2021-07-18 16:48:08 1372 1
原创 图像融合:Image Fusion with Guided Filtering
Image Fusion with Guided Filtering文章目录Image Fusion with Guided FilteringTwo-scale Image DecompositionWeight Map Construction with Guided FilteringTwo-scale Image ReconstructionDiagram of the proposed methodDataComparison with other image fusion methodsTw
2021-07-18 16:39:23 2027
原创 图像降噪:Image Smoothing via L0 Gradient Minimization
Image Smoothing via L0L0L0 Gradient Minimization文章目录Image Smoothing via L0L0L0 Gradient Minimization1D Smoothing2D FormulationWang‘s AlgorithmSolver不同于TV(Total Variation) 使用L1L_{1}L1作为正则化项,WLS(Weighted Least Squares) 使用L2L_{2}L2作为正则化项,本文采用L0L_{0}L0作为正
2021-07-18 16:26:25 1026
原创 图像融合:Exposure Fusion
Exposure Fusion文章目录Exposure FusionQuality MeasuresFusion本篇文章提出了一种将多曝光序列融合成一帧包含更多细节、内容,更高质量的图像,是一种后处理技术,而不是通常的HDR重建工作,这避免了在后处理过程中相机响应曲线(Camera Response Function)的标定。本文内容的核心思想是通过衡量一些具体的图像质量指标,比如图像亮度、颜色饱和度等,来确定序列中的图像在融合过程中所占权重,并通过图像金字塔来完成图像融合。Quality Measu
2021-07-03 19:34:12 1022 5
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人