噪声:Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise

Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise


在文章 CMOS图像传感器中的噪声来源分析中分析了图像传感器中的噪声来源, 噪声:Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data中分析了图像传感器器中的噪声分布近似服从泊松-高斯,即图像传感器中的噪声是一个 异方差的高斯噪声,这一结论对于后续的降噪而言是非常重要的,因为目前应用广泛的降噪算法,诸如:BLF、NLM、BM3D、GuideFilter的一个基础假设是图像当中的噪声为高斯白噪声,很明显泊松-高斯噪声并不符合这一假设,所以出现了对异方差高斯噪声的稳定化变换,称为噪声稳定化(Variance Stabilization Transformation),本文简称其为VST,即将原本的泊松-高斯噪声转化为高斯白噪声,这一方法由噪声分析及降噪方面的专家 Alessandro Foi提出,并在各ISP中得以广泛应用,参考 Benchmark – Darmstadt Noise Dataset中给出的各降噪算法的客观评价指标,可以看出,经过VST之后的降噪结果的客观评价指标均高于没有经过VST的,足以表明VST对泊松-高斯噪声的降噪影响,关于VST的发展历程可以参考如下几篇论文:

  • The transformation of Poisson, binomial and negative binomial data
  • A closed-form approximation of the exact unbiased inverse of the Anscombe variance-stabilizing transformation
  • On the Inversion of the Anscombe Transformation in Low-Count Poisson Image Denoising
  • Optimal inversion of the Anscombe transformation in low-count Poisson image denoising
  • Poisson-Gaussian Denoising Using the Exact Unbiased Inverse of the Generalized Anscombe Transformation
  • Variance Stabilization for Noisy+Estimate Combination in Iterative Poisson Denoising
  • Variance Stabilization in Poisson Image Deblurring

generalized Anscombe transformation

根据泊松-高斯噪声模型,图像的噪声方差可以表示为:
V = α y + σ 2 (1) V=\alpha y + \sigma ^{2}\tag{1} V=αy+σ2(1)
受噪声影响的观测信号可以表示为:
z = α p + n (2) z=\alpha p +n\tag{2} z=αp+n(2)
其中 z z z表示观测信号, α \alpha α为式(1)中的噪声参数, p p p为受泊松噪声影响的信号 p ∼ P ( y ) , E { p } = y p\sim\mathcal{P}\left(y\right),E\{p\}=y pP(y)E{ p}=y n n n为高斯噪声。式(1)表明图像的噪声强度 V V V是随信号 y y y而变化的,假设存在某种变换 F F F使得经过此变换后图像的噪声方差恒为1,即噪声由泊松-高斯噪声变为高斯白噪声,则可将上式目的公式化:
V a r { F ( z ) } = 1 (3) Var\{F(z)\}=1\tag{3} Var{ F(z)}=1(3)

  • 一维随机变量函数的期望与方差的近似计算方法
    设一维连续随机变量 X X X,其期望和方差分别为 μ 、 σ 2 \mu、\sigma^{2} μσ2,令 Y = H ( X ) Y=H(X) Y=H(X),则随机变量 Y Y Y的期望和方差如下:
    E { Y } ≈ H ( μ ) + H ′ ′ ( μ ) 2 σ 2 V a r { Y } ≈ H ′ ( μ ) 2 σ 2 E\{Y\}\approx H(\mu)+\frac{H^{''}(\mu)}{2} \sigma^{2}\\ Var\{Y\}\approx H^{'}(\mu)^{2} \sigma^2 E{ Y}H(μ)+2H(μ)σ2Var{ Y}H(μ)2σ2
    以上内容的详细推导可以参考:王新洲.非线性模型参数估计理论与应用

那么式(3)就可以写为:
V a r { F ( z ) } = ( d F ( z ) d z ) 2 V a r { z } = 1 (4) Var\{F(z)\}=(\frac{dF(z)}{dz})^{2}Var\{z\}=1\tag{4} Var{ F(z)}=(dzdF(z))2Var{ z}=1(4)
即:
d F ( z ) d z = 1 V a r { z } (5) \frac{dF(z)}{dz}=\sqrt{\frac{1}{Var\{z\}}}\tag{5} dzdF(z)

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值