《Matlab在数学建模中的应用》笔记2-非线性规划&整数规划

本文介绍了Matlab在数学建模中的应用,主要聚焦于非线性规划(NP)和整数规划。非线性规划涉及目标函数和约束条件至少一个非线性的优化问题,Matlab通过fmincon函数进行求解。整数规划则是限制变量为整数的优化问题,包括分支定界法、割平面法、隐枚举法和匈牙利法等多种求解策略。
摘要由CSDN通过智能技术生成

非线性规划(NP)

  1. 定义:求一个函数min或max问题中,目标函数或约束条件至少有一个是非线性函数。

  2. 一般形式:
    目标函数:
    minf(x)
    约束条件:
    h(x)
    g(x)

其中,x为模型的(NP)的决策变量;f称为目标函数;gihi称为约束函数。另外,g(x)称为等式约束;h(x)称为不等式约束。

  1. Matlab标准形式
    min
    s.t.

其中,f(x)是标量函数;A,B,Aeq,Beq是相应维数的矩阵和向量;C(x),Ceq(x)是非线性向量函数。

Matlab命令为

x=fmincon(fun,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS)

其返回值为向量 x 。其中,fun为需额外用M文件定义的目标函数;X0为x的初始值;A,B,Aeq,Beq对应线性不等约束 AxB 以及线性等式约束 Aeqx=B ,如果没有线性约束,则一般令A=[ ],B=[ ],Aeq=[ ],Beq=[ ]。LB&UB为变量 x 的下界和上界,若无约束,则为[ ],若无下界则,LB=-inf,若无上界,则UB=inf。NONLCON为用M文件定义的非线性向量函数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值