一般图匹配带花树算法

问题

如果图G(V,E)是一个二分图,它的最大匹配可以用匈牙利算法求解,然而当G只是一个一般图时,直接增广就变得不可行了,例如下面的例子(论文中的图):
一般图
这个问题出现的原因在于图中有奇环出现,这使得一个点既在左端也在右端,在找增广路的过程中他就会被匹配两次(可以证明二分图中仅可能出现偶环)。

算法

现在解决一般图匹配的关键点就在于如何处理这个奇数环。我们分析一下奇环的性质,首先奇环中有2k+1个点,所以最多有k组匹配。这就是说,有一个点没有匹配,即这个点在环内两边的连边都不是匹配边,也只有它能向外连边。
发现这个性质,我们可以把整个奇环缩成一个点。缩完点后的图如果可以找到一条增广路,那么原图中也可以找到一条增广路,而环内的点也可进行灵活的改变而互相没有影响。
这就是带花树的思想,整个求解过程分成n个阶段,每次从一个没有匹配的点u开始bfs找增广路,搜索开始,把s加入到队列中,标记它为S类点,如果从x点出发,搜索到了一个未标记的点,有两种情况。如果未标记的点有匹配,那么这个点设为T类点,它的匹配点设为S类点,加入队列中继续增广。如果这个点没有匹配,显然已经找到了一条增广路。沿着过来的边找回去,展开带花树。搜索过程中,如果我们遇到了奇环,那么我们找到当前点x和找到的点v,求他们的最近公共花祖先,然后把环缩掉。这里用并查集实现。

实现

关于代码方面我主要想讲一下奇环缩点(这里比较巧妙)。
首先我们有一个next数组,bfs找增广路都需要一个数组来记录路径。当已经找到了一条增广路后,我们就会把这条路径上的点u和next[u]建一条边,这就意味着原本的match[u]和u的边去掉了。
增广代码:

else if (match[y] == -1) { // y自由,可以增广,R12规则处理  
                _next[y] = x;
                for (int u = y; u != -1; ) { // 交叉链取反  
                    int v = _next[u];
                    int mv = match[v];
                    match[v] = u, match[u] = v;
                    u = mv;
                }
                break; // 搜索成功,退出循环将进入下一阶段  
            }

我们现在回到奇环中去,对于奇环而言,最多只能有一个点能和外面的点相连,但是谁我们并不可能知道,所以我们需要先假设在奇环中的点都在S端,然后继续找增广路,直到有一个点找到了,我们就沿着next连边即可。而我们在缩点的时候实际上只有一部分的点的next有值,因为在之前并不知道它是个奇数环,所以在缩点的时候就要把所有点的next建好(可能说了那么多还是有点不好理解,读者可以自己画个奇环,根据代码走一走)。
缩点代码:

void group(int a, int p) {
    while (a != p) {
        int b = match[a], c = _next[b];

        // _next数组是用来标记花朵中的路径的,综合match数组来用,实际上形成了  
        // 双向链表,如(x, y)是匹配的,_next[x]和_next[y]就可以指两个方向了。  
        if (findb(c) != p) _next[c] = b;

        // 奇环中的点都有机会向环外找到匹配,所以都要标记成S型点加到队列中去,  
        // 因环内的匹配数已饱和,因此这些点最多只允许匹配成功一个点,在aug中  
        // 每次匹配到一个点就break终止了当前阶段的搜索,并且下阶段的标记是重  
        // 新来过的,这样做就是为了保证这一点。  
        if (mark[b] == 2) mark[Q[rear++] = b] = 1;
        if (mark[c] == 2) mark[Q[rear++] = c] = 1;

        unit(a, b); unit(b, c);
        a = c;
    }
}

完整代码:

#include <cstdio>  
#include <cstring>  
#include <iostream>  
#include <queue>  
using namespace std;
const int N = 250;
// 并查集维护  
int belong[N];
int findb(int x) {
    return belong[x] == x ? x : belong[x] = findb(belong[x]);
}
void unit(int a, int b) {
    a = findb(a);
    b = findb(b);
    if (a != b) belong[a] = b;
}

int n, match[N];
vector<int> e[N];
int Q[N], rear;
int _next[N], mark[N], vis[N];
// 朴素算法求某阶段中搜索树上两点x, y的最近公共祖先r  
int LCA(int x, int y) {
    static int t = 0; t++;
    while (true) {
        if (x != -1) {
            x = findb(x); // 点要对应到对应的花上去  
            if (vis[x] == t)
                return x;
            vis[x] = t;
            if (match[x] != -1)
                x = _next[match[x]];
            else x = -1;
        }
        swap(x, y);
    }
}

void group(int a, int p) {
    while (a != p) {
        int b = match[a], c = _next[b];

        // _next数组是用来标记花朵中的路径的,综合match数组来用,实际上形成了  
        // 双向链表,如(x, y)是匹配的,_next[x]和_next[y]就可以指两个方向了。  
        if (findb(c) != p) _next[c] = b;

        // 奇环中的点都有机会向环外找到匹配,所以都要标记成S型点加到队列中去,  
        // 因环内的匹配数已饱和,因此这些点最多只允许匹配成功一个点,在aug中  
        // 每次匹配到一个点就break终止了当前阶段的搜索,并且下阶段的标记是重  
        // 新来过的,这样做就是为了保证这一点。  
        if (mark[b] == 2) mark[Q[rear++] = b] = 1;
        if (mark[c] == 2) mark[Q[rear++] = c] = 1;

        unit(a, b); unit(b, c);
        a = c;
    }
}

// 增广  
void aug(int s) {
    for (int i = 0; i < n; i++) // 每个阶段都要重新标记  
        _next[i] = -1, belong[i] = i, mark[i] = 0, vis[i] = -1;
    mark[s] = 1;
    Q[0] = s; rear = 1;
    for (int front = 0; match[s] == -1 && front < rear; front++) {
        int x = Q[front]; // 队列Q中的点都是S型的  
        for (int i = 0; i < (int)e[x].size(); i++) {
            int y = e[x][i];
            if (match[x] == y) continue; // x与y已匹配,忽略  
            if (findb(x) == findb(y)) continue; // x与y同在一朵花,忽略  
            if (mark[y] == 2) continue; // y是T型点,忽略  
            if (mark[y] == 1) { // y是S型点,奇环缩点  
                int r = LCA(x, y); // r为从i和j到s的路径上的第一个公共节点  
                if (findb(x) != r) _next[x] = y; // r和x不在同一个花朵,_next标记花朵内路径  
                if (findb(y) != r) _next[y] = x; // r和y不在同一个花朵,_next标记花朵内路径  

                                                // 将整个r -- x - y --- r的奇环缩成点,r作为这个环的标记节点,相当于论文中的超级节点  
                group(x, r); // 缩路径r --- x为点  
                group(y, r); // 缩路径r --- y为点  
            }
            else if (match[y] == -1) { // y自由,可以增广,R12规则处理  
                _next[y] = x;
                for (int u = y; u != -1; ) { // 交叉链取反  
                    int v = _next[u];
                    int mv = match[v];
                    match[v] = u, match[u] = v;
                    u = mv;
                }
                break; // 搜索成功,退出循环将进入下一阶段  
            }
            else { // 当前搜索的交叉链+y+match[y]形成新的交叉链,将match[y]加入队列作为待搜节点  
                _next[y] = x;
                mark[Q[rear++] = match[y]] = 1; // match[y]也是S型的  
                mark[y] = 2; // y标记成T型  
            }
        }
    }
}

bool g[N][N];
int main() {
    scanf("%d", &n);
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++) g[i][j] = false;

    // 建图,双向边  
    int x, y; while (scanf("%d%d", &x, &y) != EOF) {
        x--, y--;
        if (x != y && !g[x][y])
            e[x].push_back(y), e[y].push_back(x);
        g[x][y] = g[y][x] = true;
    }

    // 增广匹配  
    for (int i = 0; i < n; i++) match[i] = -1;
    for (int i = 0; i < n; i++) if (match[i] == -1) aug(i);

    // 输出答案  
    int tot = 0;
    for (int i = 0; i < n; i++) if (match[i] != -1) tot++;
    printf("%d\n", tot);
    for (int i = 0; i < n; i++) if (match[i] > i)
        printf("%d %d\n", i + 1, match[i] + 1);
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值