矩阵树定理整理及总结

本文详细介绍了矩阵树定理,即无向图的生成树计数与其Kirchhoff矩阵的关系,阐述了Kirchhoff矩阵的定义及其性质,并通过实例证明了定理的正确性。此外,还讨论了定理在有重边和有向图情况下的扩展,以及应用Cayley公式计算完全图的生成树数量。
摘要由CSDN通过智能技术生成

注:本文章内容主要摘取自周冬的PPT。
解决问题:生成树计数。
图的关联矩阵

  • 对于无向图G,我们定义它的关联矩阵B是一个n*m的矩阵,并且满足:
    如果 e i e_i ei=(vi,vj),那么 B i k B_{ik} Bik B j k B_{jk} Bjk一个为1,另一个为-1,而第k列的其他元素均为0。

  • 图G的关联矩阵如右下角所示:
    关联矩阵

  • 图的关联矩阵有什么特殊的性质呢?我们不妨来考察一下B和它的转置矩阵 B T B^T BT的乘积。
    根据矩阵乘法的定义,我们可以得到:
    这里写图片描述
    也就是说, B B i j T BB^T_ {ij} BBijT是B第i行和第j行的内积。
    因此,当i=j时, B B i j T BB^T_ {ij} BBijT

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值