出自:http://blog.csdn.net/acmaker/article/details/3561145
对踵点对
切线
给定一个凸多边形 P , 切线 l 是一条与 P 相交并且 P 的内部在 l 的一侧的线。这个概念与正交切线相似。
对踵点对
如果两个点 p 和 q (属于 P ) 在两条平行切线上, 那么他们就形成了一个对踵点对。两条不同的平行切线总是确定了至少一对的对踵点对。 根据线与多边形的相交方式, 呈现出三种情况:
- “点-点”对踵点对
- “点-边”对踵点对
- “边-边”对踵点对
情况2如图所示,发生在其中一条切线与多边形交集为其一条边, 并且另一条切线与多边形的切点唯一的时候 。 此处注意这种切线的存在必然包含两个不同“点-点”对踵点对的存在。
情况3发生在切线与多边形交于平行边的时候。 这种情况下, 切线同样确定了四个不同的“点-点”对踵点对。