旋转卡壳——对踵点对(定义)

出自:http://blog.csdn.net/acmaker/article/details/3561145

对踵点对



切线

给定一个凸多边形  P , 切线  l  是一条与  P  相交并且  P  的内部在  l  的一侧的线。 

这个概念与正交切线相似。 


对踵点对

如果两个点  p  和  q  (属于  P ) 在两条平行切线上, 那么他们就形成了一个对踵点对。 

两条不同的平行切线总是确定了至少一对的对踵点对。 根据线与多边形的相交方式, 呈现出三种情况:
  1. “点-点”对踵点对
  2. “点-边”对踵点对
  3. “边-边”对踵点对
情况1如图所示, 发生在切线对与多边形只有两个交点的时候。 途中的黑点构成了一个对踵点对。 

情况2如图所示,发生在其中一条切线与多边形交集为其一条边, 并且另一条切线与多边形的切点唯一的时候 。 此处注意这种切线的存在必然包含两个不同“点-点”对踵点对的存在。 

情况3发生在切线与多边形交于平行边的时候。 这种情况下, 切线同样确定了四个不同的“点-点”对踵点对。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值