最长上升子序列

定理

最长上升子序列=序列中非严格下降个数(HDU-1257)。
证明略。

算法(nlogn)

用一个数组B来存最长上升子序列中的值,如果a[i]>b[res],那么说明可以放到最后面,否则可以把B中第一个大于它的替换掉。

#include<iostream>
#include<algorithm>
#include<cstring>
#include<stdio.h>
using namespace std;
int a[1005];
int b[1005];
int main()
{
    int n;
    while (~scanf("%d", &n))
    {
        for (int i = 1;i <= n;i++)scanf("%d", &a[i]);
        int res = 1;
        b[1] = a[1];
        int ans = 1;
        for (int i = 2;i <= n;i++)
        {
            int j;
            if (a[i] > b[res])
            {
                res++;
                j = res;
            }
            else
                j = upper_bound(b + 1, b + 1 + res, a[i]) - b;
            b[j] = a[i];
            ans = max(ans, res);
        }
        cout << ans << endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值