大语言模型系列 - Transformer :Transformer简介

大语言模型系列 - Transformer

Transformer模型是自然语言处理(NLP)领域中的革命性架构,首次由Vaswani等人在2017年的论文《Attention is All You Need》中提出。它显著提升了机器翻译、文本生成和理解等任务的性能,并成为了许多现代大语言模型(如GPT-3和BERT)的基础。

目录

  1. 什么是Transformer
  2. Transformer的架构
  3. 核心机制:自注意力
  4. 编码器与解码器
  5. Transformer的训练
  6. Transformer的应用
  7. 优势与挑战
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值