[学习笔记]连续期望一类问题求解

本文章是[学习笔记]概率与期望进阶的一部分

方法1:对称性

• 小结论:

• 在 [ 0 … x ] [0…x] [0x]之间随机 n n n个数字第 i ( 1 ≤ i ≤ n ) i(1\leq i\leq n) i(1in)小的期望是 i ⋅ x n + 1 i·\frac{x}{n+1} in+1x
• 把 [ 0 … x ] [0…x] [0x]分成 n n n段,最短段的期望是 x n 2 \frac{x}{n^2} n2x,次短是 x n ( 1 n − 1 + 1 n ) \frac{x}{n}(\frac{1}{n-1}+\frac{1}{n}) nx(n11+n1)…。

CF1153F Serval and Bonus Problem

详细题解
没错它又来了…
只不过它是来提醒你可以用上面那个结论转成dp来做。
没错它又走了…

CF303E Random Ranking

这题名字怎么和我的CF id 差不多呢…

• 有 n n n个数字在 [ l i , r i ] [l_i,r_i] [li,ri]之间随机,求第i个数是第j名的概率。
n ≤ 80 n\leq 80 n80

因为只需体现大小关系,所以我们将坐标离散化。
d p [ a , b , c ] dp[a,b,c] dp[a,b,c]表示那些数字在当前数字的左边,那些正好在当前数字位置上,那些在当前数字右边的概率,此时排名在 [ c + 1 , c + b + 1 ] [c+1,c+b+1] [c+1,c+b+1]中等概率分布。
这样直接做是 O ( n 5 ) O(n^5) O(n5)的。
原来的题解的做法是利用生成函数来做的。
l j , m j , r j l_j,m_j,r_j lj,mj,rj分别为每个数字 j j j x x x左边/中间/右边的概率。
我们在外层枚举 x x x,那么 l j , m j , r j l_j,m_j,r_j lj,mj,rj不变。
接下来就可以表示成二元生成函数的形式:
∏ j ≠ i ( l j ⋅ x + r j ⋅ y + m j ) \prod_{j≠i}(l_j·x+r_j·y+m_j) j=i(ljx+rjy+mj)
然后我们发现当我们从 i i i移向 i + 1 i+1 i+1时就只需要除以一项再添加一项了。
这样复杂度就是 O ( n 4 ) O(n^4) O(n4)的了。
然而由于出题人非要输出小数…由于除法很费精度,结果比赛结束后被别人hack了。
之后出题人yy了一个精度小的 O ( n 4 log ⁡ n ) O(n^4\log n) O(n4logn)的分治做法…然而比较麻烦。
所以还是老老实实的写 O ( n 5 ) O(n^5) O(n5)的休闲暴力吧

UOJ352 新年的五维几何

玄学暴力系列.jpg

x 1 , x 2 , ⋯ , x n x_1,x_2,⋯,x_n x1,x2,,xn n n n 个实数变量,其中第 i i i 个变量 x i x_i xi 在区间 [ l i , r i ] [l_i,r_i] [li,ri] 内均匀随机生成,所有 l i l_i li r i r_i ri 均为给定的整数且 l i ≤ r i l_i≤r_i liri(约定 l i = r i l_i=r_i li=ri 时, [ l i , r i ] [l_i,r_i] [li,ri] 表示单元素集合 l i {l_i} li)。
给定 n × n n×n n×n 的整数矩阵,矩阵的每个元素代表一个约束,其中第 i i i 行第 j j j 列的元素 a i , j a_{i,j} ai,j 代表约束 x i − x j ≥ a i , j x_i−x_j≥a_{i,j} xixjai,j
求这 n × n n×n n×n 个约束同时被满足的概率。
n ≤ 5 , 0 ≤ l i ≤ r i ≤ 10 , − 10 ≤ a i , j ≤ 10 n\leq5, 0\leq l_i\leq r_i\leq 10, -10\leq a_{i,j}\leq10 n5,0liri10,10ai,j10均为整数

数据超级小,所以我们 O ( ∏ i = 1 n ( r i − l i + 1 ) ) O(\prod^n_{i=1}(r_i-l_i+1)) O(i=1n(rili+1))枚举每一个数。
当然我们要计算概率,确定整数部分后,根据给出的约束关系,对仅是有概率满足的就连边表示小数部分的大小约束关系。
然后我们只需要暴力 O ( n ! n ) O(n!n) O(n!n)check一下某种大小关系是否可行就好了。
中间需要剪枝,单个元素需要特判。
详细题解
复杂度: O ( ∏ i = 1 n ( r i − l i + 1 ) ⋅ n ! ⋅ n ) O(\prod^n_{i=1}(r_i-l_i+1)·n!·n) O(i=1n(rili+1)n!n)

AGC020 Arcs on a Circle

• 一个周长为 C C C的圆上,随机放了 N N N条长度为 L i L_i Li的弧,问全都覆盖的概率。
N ≤ 6 , C ≤ 50 N\leq 6, C\leq 50 N6,C50

跟上一题差不多…枚举小数部分的大小关系,然后转成离散问题…
后面的操作过于神仙…被我弃掉了…

方法2:积分

比较套路的一种想法

小栗子:

n n n辆车,第 i i i辆车到达时间在 [ 0 , a i ] [0,a_i] [0,ai]之间均匀分布。
• 问期望等待时间。
n ≤ 200000 n\leq 200000 n200000

sol:
按照套路我们设离散变量 x ∈ [ 0 , a m i n ] x\in[0,a_{min}] x[0,amin],然后开始积分:
E [ X ] = ∫ 0 a m i n ∏ i = 1 n a i − x a i   d x E[X]=\int^{a_{min}}_{0}\prod^{n}_{i=1}\frac{a_i-x}{a_i}\ \mathrm{d}x E[X]=0amini=1naiaix dx
这东西直接(分治+FFT)+多项式积分就好。

[ZJOI2015]地震后的幻想乡

• 给你一个图,每条边在[0,1]之间随机,求MST最大边的期望。
• 原题:求MST的期望。

不是很明白,大概是将连通块计数的dp变成多项式然后再多项式积分。
%%rqy神仙的博客

方法3:杂

• 你有一个大小为 1 1 1的披萨,你在上面独立随机地切了了 n n n刀。
• 然后你想选一段使得与 1 3 \frac{1}{3} 31最接近。
• 问与 1 3 \frac{1}{3} 31的差的绝对值的期望是多少。

• 一些简单的分析,就是讲披萨按第一刀切得地方分成 [ 0 , 1 3 ) [0,\frac{1}{3}) [0,31), [ 1 3 , 2 3 ) [\frac{1}{3},\frac{2}{3}) [31,32), [ 2 3 , 1 ) [\frac{2}{3},1) [32,1)这么三段。
• 然后可以理解成你在 [ 0 , 1 3 ) [0,\frac{1}{3}) [0,31)里面随机放了 n − 1 n-1 n1个点,颜色是随机RGB中的一种,答案就是两个颜色不同点的最近距
离。
• 然后答案为最小的距离 × \times ×答案为最小的概率+第二小的距离 × \times ×答案为第二小的概率+…

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值