先了解总体和样本的概念,参考博文:https://blog.csdn.net/u010916338/article/details/86540916
(1)期望就是所有发生的随机变量X的平均数(注意不是X取值范围,而是指发生的随机变量X总体,可以重复可以无限多),当X发生很多次,都拿来计算又不方便时,就会用X的观测值的算术平均数来代替。但是数学研究肯定还是用全量X来表示。
(2)观测求得的随机变量X的平均数叫做频率,而随机变量X的全量(总体)称为概率。当观测非常多时,可以近似认为频率就是概率。而实际情况是,有的对象很难拿到全量(总体),只能接近,于是就用期望来表达我们的预期即“期望”。
(3)数学研究的时候从总体出发,数学工程计算的时候从样本出发。
解析:对于连续型求期望,x代表随机变量取值,f(x)dx就等于高乘以宽等于该随机变量的概率