#include<stdio.h>
#include<iostream>
int main()
{
int n;
char str[25];
int len;
int i,j;
scanf("%d",&n);
for(i=0; i<n; i++)
{
scanf("%s",str);
if(str[0]>='a'&&str[0]<='z')//以小写开头,转为大写
str[0]-=32;
len=strlen(str);
for(j=1; j<len; j++) //除开头外均转为小写字母
if(str[j]>='A'&&str[j]<='Z')
str[j]+=32;
printf("%s\n",str);
}
return 0;
}
先找规律:
- 第二站:假设上车 x 人,则下车 x 人;车上仍然是a人;
- 第三站:上车人数等于前两站上车人数之和:a+x 人,下车人数等于上次上车人数 x 人;净上车人数为 a 人;车上有 2a 人;
- 第四站:上车人数 =a+2x,下车人数 =a+x;净上车人数 =x;车上有2a+x;
- 第五站:上车人数 =2a+3x,下车人数 =a+2x,净上车人数 =a+x;车上有 3a+2x人;
- 第六站:上车人数 =3a+5x,下车 2a+3x 人,净上车人数 =a+2x;车上有 4a+4x 人……
观察可知:在净增加人数上,x的系数满足斐波那契数列
百度百科:斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从 1963 年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
然后我们就将a和x前的系数分开计算,题目中的x为第x个车站,因此将x改为u。
#include<cstdio>
using namespace std;
int a, n, m, x, u=1, z, y;
int main()
{
scanf("%d %d %d %d", &a, &n, &m, &x);
if(n <= 5) {
if(n == 2||n == 3)
printf("%d", a);
else if(n == 4) {
if(x == 1 || x == 2) printf("%d", a);
else if(x == 3) printf("%d", a * 2);
}
else if(n == 5) {
if(x == 1 || x == 2) printf("%d", a);
else if(x == 3) printf("%d", a * 2);
else if(x == 4)
printf("%d", (m - a * 3) / 2 + a * 2);
}
}
else {
int p = 1, q = 0, k = 0, sum1 = 0;
for(int i = 1; i <= n - 5; i++) {
k = p + q;
sum1 += k;
p = q;
q = k;
}
int s1 = sum1 + 2;
int e = 0, t = 1, g = 0,sum2 = 0;
for(int i = 1; i <= n - 5; i++) {
g = e + t;
sum2 += g;
e = t;
t = g;
}
int s2 = sum2 + 1;
int S = (m - s1 * a) / s2;
q = k = e = g = sum1 = sum2 = 0;
p = t = 1;
if(x <= 5) {
if(x == 1 || x == 2) printf("%d", a);
else if(x == 3) printf("%d", a * 2);
else if(x == 4) printf("%d", S + a * 2);
else printf("%d", S * 2 + a * 3);
}
else {
for(int i = 1; i <= x - 4; i++) {
k = p + q;
sum1 += k;
p = q;
q = k;
}
sum1 += 2;
for(int i = 1; i <= x - 4; i++) {
g = e + t;
sum2 += g;
e = t;
t = g;
}
sum2 += 1;
printf("%d", sum1 * a + sum2 * S);
}
}
return 0;
}
后面看见了更简单的解法