练习题10.25

本文探讨了如何利用斐波那契数列的规律来解决关于车站上车问题的编程挑战,通过转换字符大小写并计算系数,给出了一个简洁的算法实现,并展示了两种不同的代码片段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

#include<stdio.h>
#include<iostream>
int main()
{
    int n;
    char str[25];
    int len;
    int i,j;
    scanf("%d",&n);
    
    for(i=0; i<n; i++)
    {
        scanf("%s",str);
        if(str[0]>='a'&&str[0]<='z')//以小写开头,转为大写
            str[0]-=32;
        len=strlen(str);
        for(j=1; j<len; j++) //除开头外均转为小写字母
            if(str[j]>='A'&&str[j]<='Z')
                str[j]+=32;
        printf("%s\n",str);
    }
    return 0;
}

 先找规律:

  • 第二站:假设上车 x 人,则下车 x 人;车上仍然是a人;
  • 第三站:上车人数等于前两站上车人数之和:a+x 人,下车人数等于上次上车人数 x 人;净上车人数为 a 人;车上有 2a 人;
  • 第四站:上车人数 =a+2x,下车人数 =a+x;净上车人数 =x;车上有2a+x;
  • 第五站:上车人数 =2a+3x,下车人数 =a+2x,净上车人数 =a+x;车上有 3a+2x人;
  • 第六站:上车人数 =3a+5x,下车 2a+3x 人,净上车人数 =a+2x;车上有 4a+4x 人……

观察可知:在净增加人数上,x的系数满足斐波那契数列
百度百科:斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(≥ 2,∈ N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从 1963 年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

然后我们就将a和x前的系数分开计算,题目中的x为第x个车站,因此将x改为u。

#include<cstdio>
    using namespace std;
    int a, n, m, x, u=1, z, y;
    int main()
    {
        scanf("%d %d %d %d", &a, &n, &m, &x); 
        if(n <= 5) {
            if(n == 2||n == 3)
                printf("%d", a);
            else if(n == 4) {
                if(x == 1 || x == 2) printf("%d", a);
                else if(x == 3) printf("%d", a * 2);
            }
            else if(n == 5) {
                if(x == 1 || x == 2) printf("%d", a);
                else if(x == 3) printf("%d", a * 2);
                else if(x == 4) 
                    printf("%d", (m - a * 3) / 2 + a * 2);
            }
        }
        else {
            int p = 1, q = 0, k = 0, sum1 = 0;
            for(int i = 1; i <= n - 5; i++) { 	
                k = p + q;
                sum1 += k;
                p = q;
                q = k;
            }
            int s1 = sum1 + 2;
            int e = 0, t = 1, g = 0,sum2 = 0;
            for(int i = 1; i <= n - 5; i++) {
                g = e + t;
                sum2 += g;
                e = t;
                t = g;
            }
            int s2 = sum2 + 1;
            int S = (m - s1 * a) / s2;
            q = k = e = g = sum1 = sum2 = 0;
            p = t = 1;
            if(x <= 5) {
                if(x == 1 || x == 2) printf("%d", a);
                else if(x == 3)  printf("%d", a * 2);
                else if(x == 4) printf("%d", S + a * 2);
                else printf("%d", S * 2 + a * 3);
            }
            else {
                for(int i = 1; i <= x - 4; i++) {
                    k = p + q;
                    sum1 += k;
                    p = q;
                    q = k;
                }
                sum1 += 2;
                for(int i = 1; i <= x - 4; i++) {
                    g = e + t;
                    sum2 += g;
                    e = t;
                    t = g;
                }
                sum2 += 1;
                printf("%d", sum1 * a + sum2 * S);
            }
        }
        return 0;
    } 

后面看见了更简单的解法

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值