【洛谷 P4924】[1007]魔法少女小Scarlet 题解(模拟)

[1007]魔法少女小Scarlet

题目描述

Scarlet 最近学会了一个数组魔法,她会在 n × n n\times n n×n 二维数组上将一个奇数阶方阵按照顺时针或者逆时针旋转 9 0 ∘ 90^\circ 90

首先,Scarlet 会把 1 1 1 n 2 n^2 n2 的正整数按照从左往右,从上至下的顺序填入初始的二维数组中,然后她会施放一些简易的魔法。

Scarlet 既不会什么分块特技,也不会什么 Splay 套 Splay,她现在提供给你她的魔法执行顺序,想让你来告诉她魔法按次执行完毕后的二维数组。

输入格式

第一行两个整数 n , m n,m n,m,表示方阵大小和魔法施放次数。

接下来 m m m 行,每行 4 4 4 个整数 x , y , r , z x,y,r,z x,y,r,z,表示在这次魔法中,Scarlet 会把以第 x x x 行第 y y y 列为中心的 2 r + 1 2r+1 2r+1 阶矩阵按照某种时针方向旋转,其中 z = 0 z=0 z=0 表示顺时针, z = 1 z=1 z=1 表示逆时针。

输出格式

输出 n n n 行,每行 n n n 个用空格隔开的数,表示最终所得的矩阵

样例 #1

样例输入 #1

5 4
2 2 1 0
3 3 1 1
4 4 1 0
3 3 2 1

样例输出 #1

5 10 3 18 15
4 19 8 17 20
1 14 23 24 25
6 9 2 7 22
11 12 13 16 21

提示

对于50%的数据,满足 r = 1 r=1 r=1

对于100%的数据 1 ≤ n , m ≤ 500 1\leq n,m\leq500 1n,m500,满足 1 ≤ x − r ≤ x + r ≤ n , 1 ≤ y − r ≤ y + r ≤ n 1\leq x-r\leq x+r\leq n,1\leq y-r\leq y+r\leq n 1xrx+rn,1yry+rn

思路

逆时针旋转:b[x + j][y - i] = p[x + i][y + j];
顺时针旋转:b[x - j][y + i] = p[x + i][y + j];
用完的数组要及时delete,否则会MLE。

AC代码

#include <iostream>
#include <cstring>
#define AUTHOR "HEX9CF"
using namespace std;

const int maxn = 505;

int n, m;
int cnt;
int (*a)[maxn], (*p)[maxn];

void print(int n)
{
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            if (j != 1)
            {
                putchar(' ');
            }
            cout << p[i][j];
        }
        putchar('\n');
    }
}

void copy(int (*src)[maxn], int (*dst)[maxn])
{
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            dst[i][j] = src[i][j];
        }
    }
}

// 逆时针
void rotate0(int x, int y, int r)
{
    int(*b)[maxn];
    b = new int[maxn][maxn];
    copy(p, b);
    for (int i = -r; i <= r; i++)
    {
        for (int j = -r; j <= r; j++)
        {
            // cout << i << " " << j << endl;
            b[x + j][y - i] = p[x + i][y + j];
        }
    }
    delete[] p;
    p = b;
}

// 顺时针
void rotate1(int x, int y, int r)
{
    int(*b)[maxn];
    b = new int[maxn][maxn];
    copy(p, b);
    for (int i = -r; i <= r; i++)
    {
        for (int j = -r; j <= r; j++)
        {
            // cout << i << " " << j << endl;
            b[x - j][y + i] = p[x + i][y + j];
        }
    }
    delete[] p;
    p = b;
}

int main()
{
    cin >> n >> m;
    cnt = 1;
    a = new int[maxn][maxn];
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            a[i][j] = cnt;
            cnt++;
        }
    }
    p = a;
    // print(n);
    for (int i = 0; i < m; i++)
    {
        int x, y, r, z;
        cin >> x >> y >> r >> z;
        if (z)
        {
            rotate1(x, y, r);
        }
        else
        {
            rotate0(x, y, r);
        }
        // print(n);
    }
    print(n);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值