文章结构
1. 数学语言
数学语言大体可分为:叙述语言(半形式语言)、符号语言(广义上的形式语言)、图形语言。
1.1 数学语言的理解方法:互译
- 数学语言的基本理解方法:数学语言与自然语言的互译
- 数学语言的直观理解方法:数学语言与图形语言的互译
- 数学语言的加深理解方法:各类数学语言间的互译
1.2 数学语言的阅读方法
- 拆分语句、提取关键字,准确理解关键字自身意义及相互之间的依赖、制约关系。
- 将数学语言翻译成自然语言或其他形式语言
2. 常见数学思想
2.1 函数思想
函数的概念和性质去分析问题、转化问题和解决问题的思维策略。用《函数思想》去思考、解决问题,将会大大压缩、优化问题的复杂性。函数思想的目的是将复杂问题简单化。
2.2 方程思想(数学建模)
在解决数学问题时,有一种从未知转化为已知的手段就是通过设元,寻找已知与未知之间的等量关系,构造方程或方程组,然后求解方程完成未知向已知的转化,这种解决问题的思想称为方程思想。方程与函数关系密切,方程问题也可以转换为函数问题来求解,反之亦然。
运用方程思想解题可归纳为三个步骤:
- 将所面临的问题转化为方程问题
- 解这个方程
- 将所得出的结论再返回到原问题中去
2.3 分类讨论思想
根据研究对象性质的差异,对问题分不同情况进行分析考察。
2.3.1 引起分类讨论的因素
- 由数学概念、性质、定理、公式的限制条件引起的讨论
- 数学变形造成的限制条件进行的分类讨论
- 由于图形不确定性引起的分类讨论
- 由于题目中含有字母而引起的讨论
2.3.2 分类讨论步骤
- 确定讨论对象
- 统一标准合理分类,保证讨论无遗漏、无重复
- 逐步讨论,分别进行
- 归纳所有结论,总结出整个题目结论
2.4 等价转换思想
通过一定的转化方式(如代换、逆否命题转换等),将命题转化为其便于使用的等价形式。
常见的转化策略
- 未知 ⟺ \Longleftrightarrow ⟺已知
- 正向 ⟺ \Longleftrightarrow ⟺反向
- 数字 ⟺ \Longleftrightarrow ⟺图形
- 特殊 ⟺ \Longleftrightarrow ⟺一般
- 复杂 ⟺ \Longleftrightarrow ⟺简单
2.5 数形结合思想
代数问题可以几何化,几何问题可以代数化。直观、便于理解。
3. 常见数学方法
数学方法是数学思想的体现,每种数学方法都可以归纳为一种数学思想。
- 配方法
- 换元法
- 消元法
- 待定系数法
- 反证法(逆向思维)
- 数学归纳法
- 有理化 (拆项添相移相)
- 提公因式
- 构造函数
- 恒等变形
- 坐标系变换