凸优化基本概念与kkt条件

凸优化问题
一般用
min f 0 ( x ) {f_{_0}}(x) f0(x)
s.t. f i ( x ) ≤ 0 , i = 1 , . . . , m {f_i}(x) \le 0,i = 1,...,m fi(x)0,i=1,...,m
h i ( x ) = 0 , i = 1 , . . . , p {h_i}(x) = 0,i = 1,...,p hi(x)=0,i=1,...,p
其中,f0(x)是目标函数, f i ( x ) {f_i}(x) fi(x)是不等式约束, h i ( x ) {h_{_i}}(x) hi(x)是等式约束。如果没有约束,就称问题为无约束问题。
对目标和所有约束函数有定义的点的集合,称为该问题的定义域,记为: D = ⋂ i = 0 m d o m f i ∩ ⋂ i = 1 p d o m h i D = \bigcap\limits_{i = 0}^m {dom{\rm{ }}{f_i}} \cap \bigcap\limits_{i = 1}^p {dom{\rm{ }}{{\rm{h}}_i}} D=i=0mdomfii=1pdomhi

在这里插入图片描述
在这里插入图片描述
一般要求: f 0 ( x ) {f_{_0}}(x) f0(x) f i ( x ) {f_{_i}}(x) fi(x)是凸函数,且 h i ( x ) {h_{_i}}(x) hi(x)为仿射函数(仿射函数即是有一截多项式构成的函数,一般为fx=Ax+b,其中A是个矩阵,x和b是向量),这样的问题就是凸优化问题。(定义域也要求为凸集)当目标函数是凹函数需要求极大值时,可以通过加负号转为凸函数求极小。
这里需要注意,不等式约束fi(x)<=0则要求fi(x)为凸函数,若fi(x)>=0则要求fi(x)为凹函数
凸优化的任一局部极值点也就是全局的极值点,局部最优情况也是全局最优情况。
概念先介绍到这,下面接着上一篇拉格朗日乘子法,介绍文章开头带有不等式约束条件的优化问题:
对于不等式约束的优化,一般满足著名的KKT条件,满足条件的解就是极小值点
我们定义不等式约束下的拉格朗日函数:
L ( x , λ , v ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p v i h i ( x ) L(x,\lambda ,v) = {f_0}(x) + \sum\limits_{i = 1}^m {{\lambda _i}} {f_{_i}}(x) + \sum\limits_{i = 1}^p {{v_i}{h_i}(x)} L(x,λ,v)=f0(x)+i=1mλifi(x)+i=1pvihi(x)
若要求解优化问题,必须满足下列条件,
1、L对x的一阶导数为0
2、h(x)=0
3、 λ i {{\lambda _i}} λi>=0 (对偶可行性)
4、 λ i f i ( x ) = 0 {\lambda _i}{f_i}(x) = 0 λifi(x)=0
(互补松弛条件,想要明白该条件为什么成立,可以参考知乎上的一篇文章:浅谈最优化问题的kkt条件
注意kkt条件是最优解的必要条件
如果不是凸优化问题,还要附加一个L(x, λ i {{\lambda _i}} λi)是正定的条件

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

通信仿真爱好者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值