- 博客(17)
- 收藏
- 关注
原创 USRP系列(四):USRP RIO 和 Stand-alone USRP
本文是USRP系列的第四篇,主要介绍什么是USRP RIO以及这些USRP包含什么型号的FPGA,并给出了Stand-alone设备的解释。
2022-05-04 21:31:09 2301
原创 USRP系列(三):NI 与Ettus Research的USRP区别
NI与Ettus的USRP就像他们的关系一样,它们以两个不同的品牌进行营销和销售:NI和Ettus Research。本文介绍他们的关系及对应的USRP产品线。
2022-05-04 21:28:49 3355
原创 USRP系列(二):USRP作用、组件及产品系列介绍
USRP系列(二):USRP作用、组件及产品系列介绍本文是该系列文章中的第二篇,主要对USRP的作用、组件以及系列产品进行介绍。
2022-05-04 21:25:34 9339 2
原创 USRP系列(一):软件定义无线电(SDR)
本专栏介绍通用软件定义无线电USRP,让大家对USRP以及该系列产品有个基本的认识。打算分几篇Blog从以下几个方面介绍:SDR的概念及介绍USRP的作用、组件、产品系列(包括NI和Ettus Research)NI与Ettus Research的关系及产品区别什么是USRP RIO及什么是stand-alone 的USRP首先第一篇文章介绍下SDR的基本知识:
2022-05-04 21:21:52 5017 2
原创 阵列导向矢量(Steering vector)推导
毫米波信道中S-V模型常涉及天线阵列的导向矢量,本文具体推导ULA及UPA天线阵列的导向矢量,便于记忆。
2022-03-27 21:01:40 31141 23
原创 Conic Programming 锥规划问题
Conic Programming(1) 先给出锥和凸锥的定义:(2) 锥的分类凸锥的图形化表示:Remark: 锥与球的区别(3) 锥规划问题及其对偶问题的形式:对偶锥(dual cone)(4) Conic programming 与LP、QP和SDP之间的关系资料整理来自:(1)https://zhuanlan.zhihu.com/p/36124850(2)https://zhuanlan.zhihu.com/p/36292050(3)https://zh
2022-03-17 20:05:57 1140 1
原创 VScode反向搜索突然失效解决方案
记录VSCode Latex SumatraPDF 反向搜索突然失效的原因一、 最近VScode自动更新至1.62.3版本,然后反向搜索就突然失效了。这种版本更新带来的bug的确太难找了。在知乎上找到了解决方法,贴上知乎大佬(杂然赋流形丶)的回答链接:VScode+latex+SumatraPDF反向搜索失败解决办法(Version 1.62)二、总结一下就是:突然失效原因:VS code 的版本更新造成解决方案:1. 在VS code 外打开sumatraPDF软件,再反向搜索。(前提:需要更改
2021-11-22 23:27:43 2783 7
原创 强对偶性与KKT条件
强对偶性与KKT条件1. 强对偶性:强对偶性意味着原问题与对偶问题的最优值达到相等,没有对偶间隙。强对偶性不总是成立(即使是对于凸问题)。凸问题usually (but not always)有强对偶性。有很多条件使强对偶性成立,这些条件称为constraint qualifications.其中之一就是Slater’s condition:(Slater condition 是凸问题强对偶性成立的充分条件)2. 非凸问题也可能有强对偶性非凸问题也可能有强对偶性(即原问题的解与对偶问题的解
2021-08-11 21:52:20 5988 1
原创 VS code +Latex+SumatrPDF正反向搜索设置
VS code +Latex+SumatrPDF 正反向搜索设置复制最下面的代码到settings.json即可,注意更改路径和易错点,如下:1. 不能删除.gz文件,所以清除生成的多余文件的代码为: "latex-workshop.latex.clean.fileTypes": [ "*.aux", "*.bbl", "*.blg", "*.idx", "*.ind",
2021-08-09 23:16:56 4373 7
原创 2021-08-08
win10系统安装转载:https://zhuanlan.zhihu.com/p/49181786作者:金源欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:全新的界面设计 ,将会带来全新的写作
2021-08-08 13:39:28 115
原创 BLUE(2矢量参数)
矢量参数的BLUE求解待估计的参数是px1维矢量参数,为了使估计量与数据成线性关系,要求:为了确定BLUE,我们约束 是线性且无偏的,那么求 以便使方差最小。因此:发现:这个BLUE与一般线性模型的MVU形式是一样的!下面的(高斯-马尔可夫定理)说明了一般性:附:标量和矢量参数的约束条件下求解过程还没写!至今不知道怎样在博客上打公式,只能先在word打出来,再截图贴图片了。参考:fundamentals of statistical signal processing
2020-09-23 00:23:05 577
原创 协方差矩阵、大数定律、牛顿迭代法
方差与协方差方差是用来度量单个随机变量的离散程度,而协方差是用来刻画两个随即变量的相似程度。从协方差/方差到协方差矩阵:假设一个向量X服从均值向量为μ,协方差向量为,的多元正态分布,则概率密度函数表示为:大数定律辛钦大数定律:样本均值依概率收敛于期望值。另一种切比雪夫定理的情况:...
2020-09-21 12:34:40 715
原创 MVU估计量之BLUE(1标量)
最佳线性无偏估计量(读书笔记)有时候MVU估计量即使存在也无法求出,比如在不知道数据的PDF的情况下------之前在CRLB和利用充分统计量求MVU的方法中,CRLB的思路大概是在满足PDF的正则条件下,利用等式成立的条件lnp(x;theta)与Fisher函数的关系(公式怎么打上去?)可以找到满足条件的MVU估计量,这个估计量也是有效的,(也有可能找不到MVU);利用充分统计量求MVU大概是先利用Neyman-Fisher因子分解定理找到充分统计量,再判断充分估计量的完备性(利用g(T(x))函数
2020-09-20 01:05:41 3349
原创 卷积神经网络
卷积神经网络(CNN)是深度学习(DL)模型的一种1、在整个神经网络结构中,通常分为:卷积层、池化层、归一化层、非线性层和全连接层。有关各层的详细作用及工作原理见博客https://blog.csdn.net/yjl9122/article/details/701983572、其中有许多不易理解的名词,有关解释见博客https://blog.csdn.net/weixin_4001346...
2019-12-15 14:33:30 197
原创 深度学习与卷积神经网络
**自己学习笔记深度学习概述深度学习(Deep Learning, DL)由Hinton等人于2006年提出,是机器学习(MachineLearning, ML)的一个新领域,近年来在语音识别、计算机视觉等多类应用中取得突破性的进展。其动机在于建立模型模拟人类大脑的神经连接结构,在处理图像、声音和文本这些信号时,通过多个变换阶段分层对数据特征进行描述,进而给出数据的解释。深度学习本质上是...
2019-12-15 14:23:53 4056
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人