信号的平均功率与均方值
物理上我们知道 平均功率=
P
=
v
2
(
t
)
‾
R
P = \frac{{\overline {{v^2}(t)} }}{R}
P=Rv2(t) 或
P
=
i
2
(
t
)
‾
∙
R
P = \overline {{i^2}(t)} \bullet R
P=i2(t)∙R
为了单独讨论信号本身产生的作用,人们引入归一化功率概念,即R=1欧姆
所以,任意信号的x(t)的平均功率定义为:
P
=
x
2
(
t
)
‾
=
lim
T
−
>
∞
1
2
T
∫
−
T
T
x
2
(
t
)
P = \overline {{x^2}(t)} = \mathop {\lim }\limits_{T - > \infty } \frac{1}{{2T}}\int_{ - T}^T {{x^2}(t)}
P=x2(t)=T−>∞lim2T1∫−TTx2(t) (1)
对能量信号,肯定是在整个时间范围内积分,所以有总能量等于:
E
=
lim
T
−
>
∞
∫
−
T
T
x
2
(
t
)
=
∫
∞
∞
x
2
(
t
)
E = \mathop {\lim }\limits_{T - > \infty } \int_{ - T}^T {{x^2}(t)} = \int_\infty ^\infty {{x^2}(t)}
E=T−>∞lim∫−TTx2(t)=∫∞∞x2(t)
接下来说说均值
对连续变量,有
E
(
x
(
t
)
)
=
∫
x
(
t
)
f
(
x
,
t
)
d
x
E(x(t)) = \int {x(t)f(x,t)dx}
E(x(t))=∫x(t)f(x,t)dx
对离散变量,
E
(
x
(
t
)
)
=
1
N
∑
i
=
0
N
x
2
(
t
)
E(x(t)) = \frac{1}{N}\sum\limits_{i = 0}^N {{x^2}(t)}
E(x(t))=N1i=0∑Nx2(t) (2)
若讲(1)式换为离散的形式,正好和(2)式一样,其中分母中的2T与N是一样的。
所以我们通常把随机信号的均方值称为平均功率。论文中常出现的这个约束就理解了。
信号的协方差矩阵Q=E(
x
x
H
x{x^H}
xxH)
所以总功率P=
x
H
x
=
t
r
(
x
x
H
)
=
t
r
(
Q
)
{x^H}x = tr(x{x^H}) = tr(Q)
xHx=tr(xxH)=tr(Q)
信号的平均功率与均方值
最新推荐文章于 2025-02-28 09:27:06 发布