信号的平均功率与均方值

信号的平均功率与均方值
物理上我们知道 平均功率= P = v 2 ( t ) ‾ R P = \frac{{\overline {{v^2}(t)} }}{R} P=Rv2(t) P = i 2 ( t ) ‾ ∙ R P = \overline {{i^2}(t)} \bullet R P=i2(t)R
为了单独讨论信号本身产生的作用,人们引入归一化功率概念,即R=1欧姆
所以,任意信号的x(t)的平均功率定义为:
P = x 2 ( t ) ‾ = lim ⁡ T − > ∞ 1 2 T ∫ − T T x 2 ( t ) P = \overline {{x^2}(t)} = \mathop {\lim }\limits_{T - > \infty } \frac{1}{{2T}}\int_{ - T}^T {{x^2}(t)} P=x2(t)=T>lim2T1TTx2(t) (1)
对能量信号,肯定是在整个时间范围内积分,所以有总能量等于:
E = lim ⁡ T − > ∞ ∫ − T T x 2 ( t ) = ∫ ∞ ∞ x 2 ( t ) E = \mathop {\lim }\limits_{T - > \infty } \int_{ - T}^T {{x^2}(t)} = \int_\infty ^\infty {{x^2}(t)} E=T>limTTx2(t)=x2(t)
接下来说说均值
对连续变量,有 E ( x ( t ) ) = ∫ x ( t ) f ( x , t ) d x E(x(t)) = \int {x(t)f(x,t)dx} E(x(t))=x(t)f(x,t)dx
对离散变量, E ( x ( t ) ) = 1 N ∑ i = 0 N x 2 ( t ) E(x(t)) = \frac{1}{N}\sum\limits_{i = 0}^N {{x^2}(t)} E(x(t))=N1i=0Nx2(t) (2)
若讲(1)式换为离散的形式,正好和(2)式一样,其中分母中的2T与N是一样的。
所以我们通常把随机信号的均方值称为平均功率。论文中常出现的这个约束就理解了。
在这里插入图片描述
信号的协方差矩阵Q=E( x x H x{x^H} xxH)
所以总功率P= x H x = t r ( x x H ) = t r ( Q ) {x^H}x = tr(x{x^H}) = tr(Q) xHx=tr(xxH)=tr(Q)

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路明非的sakura

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值