近年来,随着大数据应用的普及,在新基建、智慧城市、云端应用等大背景趋势下,给我们日常生活便来了很多方便,同时也派生出更多网络安全风险。如企业数据泄露、欺诈、数据违规使用,个人隐私泄露以及企业内部各种威胁和潜在风险。数据是宝贵的资源和财富,当数据开始流转起来,数据的价值方能得到体现。
当前,越来越多的行业决策开始从业务驱动向数据驱动转变。数据作为企业内部生产要素,能够帮助企业提升最终产品或服务的性能或生产效率,比如引流、效果广告、配送优化等,帮助企业在瞬息万变的市场中做出科学决策。但在整个数据流通的过程中,数据的安全治理是基础。国家正式颁行的《数据安全法》和《个人信息保护法》,足见政府对数据安全的重视程度。
一、大数据安全面临的挑战
海量数据的管理问题是对每一个大数据运营者的最大挑战。在网络空间,大数据更是容易被“瞄准”的显著目标,大数据成为网络攻击的第一练兵场。
一方面,大量数据的集中存储增加了泄露风险,黑客的一次成功攻击就能获得比以往更多的数据量,无形中降低了其进攻成本,增加了“攻击收益”。
另一方面,大数据意味着海量数据的汇集,这里面蕴藏着更加复杂、敏感以及价值巨大的数据,这些数据会引来更多的潜在攻击者。
大数据时代的安全与传统信息安全相比,变得更加错综复杂,具体体现在:
其一,大量的数据汇集
本文探讨了大数据安全与治理面临的挑战,包括数据泄露风险、安全管控和治理难题。提出数据分类分级和涉敏数据分析作为治理方向,并介绍了数据安全治理模型(DSG)和Hadoop安全治理策略。大数据安全治理平台设计方案涵盖了数据标准落地、数据质量管控、自动化运维及安全建设等多个方面,旨在建立全面的数据安全防护体系。
订阅专栏 解锁全文

1035

被折叠的 条评论
为什么被折叠?



