1、数据分析应用场景
数据分析场景:

例如逛淘宝,后台一般会从以下几个方面对用户数据进行分析来,了解的一个产品的数据模型。
1. Acquisition(获取用户)
运营一件产品首先就需要获取用户,也就是推广。运营人员要分析自己产品的特性以及想要推广的目标人群,再对目标人群进行定位和匹配。在这一阶段需要关注推广各渠道的流量、质量、获客成本等因素。
核心指标:曝光量、点击量、下载量、安装量、激活量、CTR、激活率、安装率、总用户数;
分析方法:趋势洞察、渠道归因、链接标记、漏斗分析、热图分析、分群分析、A/B测试、留存分析;
2. Activate(激活用户)
我们已经获取到新用户,接下来就应该考虑怎样留住这些新增用户,怎样让用户停留时间增加,这就需要我们把内容做多,商品最多,价格更加优惠,更加的吸引用户,在产品策略上,除了提供运营模块和内容深化,进行产品会员激励机制成长体制使用户更加活跃。
核心指标
本文探讨了AARRR模型在数据分析中的应用,涵盖了用户获取、激活、留存、收入和自传播五个关键环节,强调了每个环节数据分析的重要性。此外,还介绍了数据分析流程,包括分析设计、数据收集、处理、分析、展现和报告撰写,以及所需的技术栈,如数据抓取、清洗、可视化和机器学习。最后,通过用户购买行为分析,展示了如何进行用户行为洞察和业务决策支持。
订阅专栏 解锁全文


被折叠的 条评论
为什么被折叠?



