机器学习高频面试题

1、机器学习数据集的理解

2、机器学习中特征的理解

def:特征选择和降维

特征选择:原有特征选择出子集,不改变原来的特征空间

降维:将原有的特征重组成为包含信息更多的特征,改变了原有的特征空间

降维的主要方法:

  • Principal Component Analysis(主成分分析)
  • Singular Value Decomposition(奇异值分解)
  • Sammon’s Mapping(Sammon映射)

特征选择的方法:

Filter方法:卡方检验、信息增益、相关系数

Wrapper方法:

其主要思想是:将子集的选择看作是一个搜索寻优问题,生成不同的组合,对组合进行评价,再与其他的组合进行比较。这样就将子集的选择看作是一个是一个优化问题,这里有很多的优化算法可以解决,尤其是一些启发式的优化算法,如GA,PSO,DE,ABC等&

以下是一些常见的pyspark高频面试题: 1. 请解释一下pyspark的工作原理和核心概念。 2. 请简要介绍DataFrame和RDD的区别。 3. 如何在pyspark中读取和写入数据? 4. 请解释一下pyspark中的广播变量和累加器的作用。 5. 如何对数据进行缓存以提高性能? 6. 如何处理缺失值和异常值? 7. 怎样使用pyspark进行特征工程,比如特征选择和特征转换? 8. 如何使用pyspark进行模型评估和调优? 9. 请解释一下pyspark中的机器学习流程。 10. 如何在集群上部署和执行pyspark应用程序? 以上是一些常见的pyspark高频面试题,根据实际面试需求,可能还会有其他特定的问题。准备这些问题的答案,并结合你自己的经验和项目实践,可以帮助你在pyspark的面试中更好地展示自己的能力和知识。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [mysql高频面试题及答案](https://download.csdn.net/download/qq_28356739/87564137)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [大数据面试指导](https://blog.csdn.net/weixin_46580067/article/details/127345017)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [小公司面试](https://blog.csdn.net/weixin_41510179/article/details/113175615)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wespten

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值