1、机器学习数据集的理解
2、机器学习中特征的理解
def:特征选择和降维
特征选择:原有特征选择出子集,不改变原来的特征空间
降维:将原有的特征重组成为包含信息更多的特征,改变了原有的特征空间
降维的主要方法:
- Principal Component Analysis(主成分分析)
- Singular Value Decomposition(奇异值分解)
- Sammon’s Mapping(Sammon映射)
特征选择的方法:
Filter方法:卡方检验、信息增益、相关系数
Wrapper方法:
其主要思想是:将子集的选择看作是一个搜索寻优问题,生成不同的组合,对组合进行评价,再与其他的组合进行比较。这样就将子集的选择看作是一个是一个优化问题,这里有很多的优化算法可以解决,尤其是一些启发式的优化算法,如GA,PSO,DE,ABC等&