OpenCV4.0 DNN(二) ——Net篇

OpenCV DNN之Net

从OpenCV DNN的Net类入手,拆解OpenCV中DNN的结构。本文主要介绍Net类并且提供googleNet的demo。

Net类的定义

path:opencv/modules/dnn/include/opencv2/dnn/dnn.hpp +365

这个类中定义了创建和操作网络的方法;所谓神经网络其实是一个有向无环图(DAG),图的顶点是层的实例,边表示输入输出关系。每一个层,在网络中都有唯一的整数ID和字符串名称作为标识;同时,这个类支持副本的引用计数,也就是说副本指向同一个实例。

以下是Net类的源代码:

class CV_EXPORTS_W_SIMPLE Net
{
public:

  CV_WRAP Net();  //!< 默认构造函数
  CV_WRAP ~Net(); //!< 默认析构函数;引用计数为0则析构

    //使用Inter model优化器的中间表示来创建网络;
    //xml是网络拓扑结构的XML配置文件
    //bin是model的model的二进制文件
    //使用Inter model优化器创建网络,OpenCV会使用inter的推理引擎后端进行推理;
  CV_WRAP static Net readFromModelOptimizer(const String& xml, const String& bin);

   //测试网络中是否有layer,是否为空;若没有layer则返回true
  CV_WRAP bool empty() const;

   //向网络中添加新的layer;
   //name是layer的名字,是唯一的;
   //type是网络的类型,卷积层还是relu等;但是必须是OpenCV支持的层,或者自己实现的,在层注册器中注册过的类型;
   //params是层的参数,用于初始化该层;
   //返回值为该层唯一的整数ID;若返回-1表示添加失败
  int addLayer(const String &name, const String &type, LayerParams &params);

   //添加新层,将其第一个输入与上一层第一个输出相连接;
   //参数与addLayer函数相同;
  int addLayerToPrev(const String &name, const String &type, LayerParams &params);

   //转换layer的string name ;返回整数ID;若为-1,则layer不存在
  CV_WRAP int getLayerId(const String &layer);
   //获取layer的string name
  CV_WRAP std::vector<String> getLayerNames() const;

   //字符串和整数的容器
  typedef DictValue LayerId;

   //返回指向网络中指定ID的层的指针
   //ID为整数ID或者字符串ID
  CV_WRAP Ptr<Layer> getLayer(LayerId layerId);

   //返回指向特定层的输入层的指针
  std::vector<Ptr<Layer> > getLayerInputs(LayerId layerId);

   //连接第一个layer的输出与第二个layer的输入
   //outPin 第一个layer输出的描述.
   //inpPin 第二个layer输入的描述.
   //输入的模板为:<layer_name>.[input_num]
   //模板层名称的第一部分是添加层的sting名称。如果该部分为空,则使用网络输入伪层;
   //模板输入编号的第二个可选部分是层输入编号,或者是标签编号。如果省略此部分,则将使 用第一层输入。
  CV_WRAP void connect(String outPin, String inpPin);

   //第一层的输出与第二层输入相连接
   //outLayerId 第一层的标识符
   //outNum 第一层输出的编号(一个层可能会有多个输出)
   //inpLayerId 第二层的标识符
   //inpNum 第二层输入的编号
  void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);

   //设置网络输入伪层的输出名称
   //每个网络都有自己的输入伪层,id=0
   //该层仅仅存储user的blobs,不进行任何计算
   //这一层提供了用户数据传递到网络中的唯一方法
   //与任何其他层一样,此层可以标记其输出,而此函数提供了一种简单的方法来实现这一点。
  CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames);

   //下面是Net中的几个forward,上篇博客中介绍过;在此不赘述
  CV_WRAP Mat forward(const String& outputName = String());

  CV_WRAP void forward(OutputArrayOfArrays outputBlobs,
      const String& outputName = String());

  CV_WRAP void forward(OutputArrayOfArrays outputBlobs,
      const std::vector<String>& outBlobNames);

  CV_WRAP_AS(forwardAndRetrieve) void forward(
      CV_OUT std::vector<std::vector<Mat> >& outputBlobs,
      const std::vector<String>& outBlobNames);

   //编译Halide layers.<Halide是由MIT、Adobe和Stanford等机构合作实现的图像处理语言,它的核心思想即解耦算法和优化>
   //scheduler : 带有scheduler指令的yaml文件的路径
   //@see setPreferableBackend
   //调度Halide后端支持的层,然后编译
   //对于scheduler中不支持的层,或者完全不使用手动调度的层,会采用自动调度
  CV_WRAP void setHalideScheduler(const String& scheduler);

   //指定使用特定的计算平台运行网络
   //输入是backend的标识符
   //如果使用Intel的推理引擎库,DNN_BACKEND_DEFAULT默认表示
   //DNN_BACKEND_INFERENCE_ENGINE 否则是DNN_BACKEND_OPENCV.
  CV_WRAP void setPreferableBackend(int backendId);


   //指定特定的计算设备
   //输入是目标设备的标识符
   /*
    * List of supported combinations backend / target:
    * |                        | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE |
    * |------------------------|--------------------|------------------------------|--------------------|
    * | DNN_TARGET_CPU         |                  + |                            + |                  + |
    * | DNN_TARGET_OPENCL      |                  + |                            + |                  + |
    * | DNN_TARGET_OPENCL_FP16 |                  + |                            + |                    |
    * | DNN_TARGET_MYRIAD      |                    |                            + |                    |
   */
  CV_WRAP void setPreferableTarget(int targetId);

   //setInput在上篇博客中已经介绍,在此不赘述
  CV_WRAP void setInput(InputArray blob, const String& name = "",
                    double scalefactor = 1.0, const Scalar& mean = Scalar());

   //为layer设置新的参数
   //layer的name
   //layer参数的索引(Layer::blobs array)
   //新的值 Layer::blobs
   //如果新blob的形状与前一个形状不同,则以下正向传递可能失败
  CV_WRAP void setParam(LayerId layer, int numParam, const Mat &blob);

   //返回指定层参数的blob
   //参数同setParam
  CV_WRAP Mat getParam(LayerId layer, int numParam = 0);

   //返回具有未连接输出的层的索引
  CV_WRAP std::vector<int> getUnconnectedOutLayers() const;
   //返回具有未连接输出的层的名字
  CV_WRAP std::vector<String> getUnconnectedOutLayersNames() const;

   //输出网络中所有layer的input和output的shapes
   //netInputShapes 网络输入层中所有输入块的形状
   // layersIds 返回层的ID
   //inLayersShapes 返回输入层形状 顺序与layersIds的顺序相同
   //outLayersShapes 返回输出层形状 顺序与layersIds的顺序相同
  CV_WRAP void getLayersShapes(
      const std::vector<MatShape>& netInputShapes,
      CV_OUT std::vector<int>& layersIds,
      CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
      CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;

   /** @重载 */
  CV_WRAP void getLayersShapes(const MatShape& netInputShape,
      CV_OUT std::vector<int>& layersIds,
      CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
      CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;

   //输出网络中指定layer的input和output的shapes
   //netInputShape 网络输入的shapes
   //指定layer的ID
   //inLayerShapes返回指定层input的shapes
   //outLayerShapes返回指定层output的shapes
  void getLayerShapes(const MatShape& netInputShape,
                          const int layerId,
                          CV_OUT std::vector<MatShape>& inLayerShapes,
                          CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP

   /** @重载 */
  void getLayerShapes(const std::vector<MatShape>& netInputShapes,
                          const int layerId,
                          CV_OUT std::vector<MatShape>& inLayerShapes,
                          CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP

   //计算指定input,运行整个网络的FLOPS
   //netInputShapes 所有输入的shapes
   //返回值为FLOP
  CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const;
   /** 重载 */
  CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const;
   
   //计算指定layer的FLOPS
  CV_WRAP int64 getFLOPS(const int layerId,
                      const std::vector<MatShape>& netInputShapes) const;
   /** 重载 */
  CV_WRAP int64 getFLOPS(const int layerId,
                      const MatShape& netInputShape) const;

   //获取整个model中layer Type的列表
  CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const;

   //返回网络中指定layer Type的数量
  CV_WRAP int getLayersCount(const String& layerType) const;

   //计算存储模型的权重和中间blob所需的字节数
   //netInputShapes 网络所有输入的shapes
   //weights 输出存储模型中所有层的权重所占用的字节数
   //运行模型,中间blob所需的字节数
  void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
          CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP
   /** 重载 */
  CV_WRAP void getMemoryConsumption(const MatShape& netInputShape,
          CV_OUT size_t& weights, CV_OUT size_t& blobs) const;

   //获取模型中指定layer存储权重和中间blob所需的字节数
  CV_WRAP void getMemoryConsumption(const int layerId,
          const std::vector<MatShape>& netInputShapes,
          CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
   /** 重载 */
  CV_WRAP void getMemoryConsumption(const int layerId,
          const MatShape& netInputShape,
          CV_OUT size_t& weights, CV_OUT size_t& blobs) const;

   //计算模型中每一个layer,存储权重和中间blob所需的字节数
   //netInputShapes 网络的所有input的shapes
   //layerIds 输出网络中所有层的layer ID
   //weights 各个层存储权重所需的字节数,与layersIds对应
   //blobs 各个层存储中间blobs所需的字节数,与layersIds对应
  void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
          CV_OUT std::vector<int>& layerIds,
          CV_OUT std::vector<size_t>& weights,
          CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
   /** 重载 */
  void getMemoryConsumption(const MatShape& netInputShape,
          CV_OUT std::vector<int>& layerIds,
          CV_OUT std::vector<size_t>& weights,
          CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP

   //启用或者禁用网络中的层融合
   //启用为true;禁用为false;
   //默认为启用的
  CV_WRAP void enableFusion(bool fusion);
   
   //返回推理的总时间和layers的时间(in ticks)
   //返回的向量中的索引对应layers ID,有些层可以与其它层融合,在这种情况下,跳过的层计时为0
   //timings 各个层的时间
   //整个model的推理时间
  CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings);

    private:
        struct Impl;
        Ptr<Impl> impl;
    };
}

以上是整个Net中定义的功能,程序中做了简单的注释,某些函数会很清晰,例如addLayer,但是有的函数可能看起来不知所云;没有关系,在后续的文章中会逐步涉及到所有函数,结合函数的定义,会更加清晰。从对Net的生命的分析,可以看出OpenCV为推理提供了强大的功能;除了对网络的操作(例如添加不同的layers)之外,同时提供了推理平台选择等函数,还提供了丰富的profiling功能,可以方便的分析内存和耗时。

OpenCV运行googleNet

下面给出一个demo,使用openCV完成googleNet的推理;

#include "opencv2/opencv.hpp"
#include "opencv2/dnn.hpp"
#include <iostream>
#include <fstream>

using namespace cv;
using namespace cv::dnn;
using namespace std;

String modelTxt = "bvlc_googlenet.prototxt";
String modelBin = "bvlc_googlenet.caffemodel";
String labelFile = "synset_words.txt";

vector<String> readLabels();
int main(int argc, char** argv) {
   Mat testImage = imread("./space_shuttle.jpg");
   if (testImage.empty()) {
       printf("could not load image...\n");
       return -1;
   }

   //使用caffe model创建Net
   Net net = dnn::readNetFromCaffe(modelTxt, modelBin);
   if (net.empty())
   {
       std::cerr << "Can't load network by using the following files: " << std::endl;
       std::cerr << "prototxt:   " << modelTxt << std::endl;
       std::cerr << "caffemodel: " << modelBin << std::endl;
       return -1;
   }

   // 读取分类数据
   vector<String> labels = readLabels();

   //GoogLeNet accepts only 224x224 RGB-images
   Mat inputBlob = blobFromImage(testImage, 1, Size(224, 224), Scalar(104, 117, 123), false, true);

   Mat prob;
   for (int i = 0; i < 10; i++)
   {
       // 输入
       net.setInput(inputBlob, "data");
       // 分类预测
       prob = net.forward("prob");
   }
   //测试推理时间
   int64 totalTime = Net.getPerfProfile(NULL);
   printf("total forward time is %d\n");

   // 读取分类索引,最大与最小值
   Mat probMat = prob.reshape(1, 1); //reshape the blob to 1x1000 matrix // 1000个分类
    Point classNumber;
    double classProb;
    minMaxLoc(probMat, NULL, &classProb, NULL, &classNumber); // 可能性最大的一个
    int classIdx = classNumber.x; // 分类索引号
    printf("\n current image classification : %s, possible : %.2f \n", labels.at(classIdx).c_str(), classProb);

    putText(testImage, labels.at(classIdx), Point(20, 20), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 0, 255), 2, 8);
    imshow("Image Category", testImage);

    waitKey(0);
    return 0;
}


/* 读取图像的1000个分类标记文本数据 */
vector<String> readLabels() {
    std::vector<String> classNames;
    std::ifstream fp(labelFile);
    if (!fp.is_open())
    {
        std::cerr << "File with classes labels not found: " << labelFile << std::endl;
        exit(-1);
    }

    std::string name;
    while (!fp.eof())
    {
        std::getline(fp, name);
        if (name.length())
            classNames.push_back(name.substr(name.find(' ') + 1));
    }

    fp.close();
    return classNames;
}

demo执行结果:

图片

图片

原帖:https://mp.weixin.qq.com/s/MtsVQfBbQBPqASPWAaG8mQ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值