gradcam: Class Activation Maps for Semantic Segmentation

本文介绍了GradCAM技术,一种用于语义分割的可视化工具,通过类激活映射揭示图像中影响分类的区域。GradCAM利用梯度信息来定位目标类别在特征图上的重要区域,为深度学习模型的决策过程提供了直观的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

pip install grad-cam -i https://pypi.tuna.tsinghua.edu.cn/simple
import warnings
warnings.filterwarnings('ignore')
warnings.simplefilter('ignore')
from torchvision.models.segmentation import deeplabv3_resnet50
import torch
import torch.functional as F
import numpy as np
import requests
import torchvision
from PIL import Image
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image


image_url = "https://farm1.staticflickr.com/6/9606553_ccc7518589_z.jpg"
image = np.array(Image.open(requests.get(image_url, stream=True).raw))
rgb_img = np.floa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVer儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值