熄灯问题
有一个由按钮组成的矩阵, 其中每行有6个按钮, 共5行– 每个按钮的位置上有一盏灯– 当按下一个按钮后,,该按钮以及周围位置(上边, 下边,左边, 右边)的灯都会改变状态。
– 如果灯原来是点亮的, 就会被熄灭
– 如果灯原来是熄灭的, 则会被点亮
• 在矩阵角上的按钮改变3盏灯的状态
• 在矩阵边上的按钮改变4盏灯的状态
• 其他的按钮改变5盏灯的状态
与一盏灯毗邻的多个按钮被按下时,一个操作会抵消另一次操作的结果
给定矩阵中每盏灯的初始状态,求一种按按钮方案,使得所有的灯都熄灭
输入:
– 第一行是一个正整数N, 表示需要解决的案例数
– 每个案例由5行组成, 每一行包括6个数字
– 这些数字以空格隔开, 可以是0或1
– 0 表示灯的初始状态是熄灭的
– 1 表示灯的初始状态是点亮的
输出:
– 对每个案例, 首先输出一行,
输出字符串 “PUZZLE #m”, 其中m是该案例的序号
– 接着按照该案例的输入格式输出5行
• 1 表示需要把对应的按钮按下
• 0 0 表示不需要按对应的按钮
• 每个数字以一个空格隔开
样例输入
2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0
样例输出
PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1 31
解题分析
• 第2次按下同一个按钮时,
将抵消第1次按下时所产生的结果
每个按钮最多只需要按下一次
• 各个按钮被按下的顺序对最终的结果没有影响
• 对第1行中每盏点亮的灯, 按下第2行对应的按钮, 就可以熄灭第1行的全部灯
• 如此重复下去, 可以熄灭第1, 2, 3, 4行的全部灯
• 第一想法: 枚举所有可能的按钮(开关)状态, 对每个状态计算一下最后灯的情况, 看是否都熄灭
– 每个按钮有两种状态(按下或不按下)
– 一共有30个开关, 那么状态数是2 30 , 太多, 会超时
• 如何减少枚举的状态数目呢?
基本思路: 如果存在某个局部, 一旦这个局部的状态被确定, 那么剩余其他部分的状态只能是确定的一种, 或者不多的n种, 那么就只需枚举这个局部的状态即可
• 本题是否存在这样的 “局部” 呢?
• 经过观察, 发现第1行就是这样的一个 “局部”
– 因为第1行的各开关状态确定的情况下, 这些开关作用过后,将导致第1行某些灯是亮的, 某些灯是灭的
要熄灭第1行某个亮着的灯(假设位于第i列), 那么唯一的办法就是按下第2行第i列的开关(因为第1行的开关已经用过了, 而第3行及其后的开关不会影响到第1行)
– 为了使第1行的灯全部熄灭, 第2行的合理开关状态就是唯一的
• 第2行的开关起作用后,
为了熄灭第2行的灯, 第3行的合理开关状态就也是唯一的
以此类推, 最后一行的开关状态也是唯一的
• 只要第1行的状态定下来, 记作A, 那么剩余行的情况就是确定唯一的了
推算出最后一行的开关状态, 然后看看最后一行的开关起作用后,最后一行的所有灯是否都熄灭:
• 如果是, 那么A就是一个解的状态
• 如果不是, 那么A不是解的状态, 第1行换个状态重新试试
• 只需枚举第1行的状态, 状态数是2 6 = 64
下面有两种方案,第一种方案是本人的笨的办法,使用的Iint型二维数组,很浪费空间,为了减少每一步边界断影响运行效率,数组的0行0列,尾行尾列都不管,只检查中间要用到的行列情况,需要将数组开空间扩大。
#include <iostream>
using namespace std;
int a[7][8]; //初始状态 ,数组开大一点,头尾行列都不管,省去每执行一步都去判断边界以提高运行效率;
int b[7][8]; //用于存储变化中的状态
int c[7][8]; //用于最后结束输出;
void fun(int n) {
//第一行的第N个操作状态
for(int i=1;i<7;++i)
{
c[1][i]=n%2;
n=n/2;
}
}
void set(int i,int j){
//该行列灯被按下后相邻各灯的变化
b[i][j]^=1;
b[i+1][j]^=1;
b[i-1][j]^=1;
b[i][j+1]^=