LMS与RLS算法学习笔记
实现代码点击 这里下载
一、 研究目的
1.1最陡下降法理论
LMS算法总是与最陡下降法
联合使用,顾名思义,最陡下降法
就是沿着性能曲面最陡放方向向下(曲面负梯度方向)
搜索曲面的最低点。迭代过程首先从曲面上某个初始点(对应与初始权矢量w(0) )
出发,沿着该点负梯度方向搜索至第一点(对应与初始权矢量w(1) ,且w(1)等于初始值w(0)加上一个正比于负梯度的增量 )
。以此类推,直到搜索到最低点 w* 。所以最陡下降法迭代计算权矢量的公式为:
w ( n + 1 ) = w ( n ) + μ ( − ∇ ( n ) ) \boldsymbol{w(n+1)}=\boldsymbol{w(n)}+\mu(-\boldsymbol{\nabla}(n)) w(n+1)=w(n)+μ(−∇(n))
式中, μ \mu μ是控制搜索步长的参数称为自适应增益常数。那么如何选取合适的 μ \mu μ值?
由于推到十分复杂,这里简单给出结论:
0 < μ < λ m a x − 1 0<\mu<\lambda^{-1}_{max} 0<μ<λmax−1
式中, λ m a x \lambda_{max} λmax为 R ( x ( n ) 自 相 关 矩 阵 ) R(x(n)自相关矩阵) R(x(n)自相关矩阵)的最大特征值。当然有时为了免去计算 R R R的特征值的麻烦,因为 R R R是正定的,所以有:
t r [ R ] = ∑ k = 0 L λ k > λ m a x t_r[R]=\sum_{k=0}^L\lambda_{k}>\lambda_{max} tr[R]=k=0∑Lλk>λmax
这里, t r [ R ] t_r[R] tr[R]是 R R R的迹,它可以用输入信号的取样值进行估计,即:
t r [ R ] = ∑ k = 0 L E [ x i 2 ( n ) ] t_r[R]=\sum_{k=0}^LE[x^2_i(n)] tr[R]=k=0∑LE[xi2(n)]
所以进一步有:
0 < μ < t r − 1 [ R ] 0<\mu<t_r^{-1}[R] 0<μ<tr−1