LMS与RLS算法学习笔记

本文深入探讨了LMS与RLS算法,包括最陡下降法理论、LMS算法的基本关系式和RLS算法的迭代计算。通过在二阶自适应一步预测横向滤波器的应用实例,展示了在不同参数设置下(步长μ=0.002, 遗忘因子λ=0.98),RLS算法相比LMS算法具有更快的收敛速度。" 132659130,19673915,Python Pandas库与Oracle数据库的时间条件查询,"['Python', '数据库', '数据分析']
摘要由CSDN通过智能技术生成


实现代码点击 这里下载

一、 研究目的

1.1最陡下降法理论

LMS算法总是与最陡下降法联合使用,顾名思义,最陡下降法就是沿着性能曲面最陡放方向向下(曲面负梯度方向)搜索曲面的最低点。迭代过程首先从曲面上某个初始点(对应与初始权矢量w(0) )出发,沿着该点负梯度方向搜索至第一点(对应与初始权矢量w(1) ,且w(1)等于初始值w(0)加上一个正比于负梯度的增量 )。以此类推,直到搜索到最低点 w* 。所以最陡下降法迭代计算权矢量的公式为:
w ( n + 1 ) = w ( n ) + μ ( − ∇ ( n ) ) \boldsymbol{w(n+1)}=\boldsymbol{w(n)}+\mu(-\boldsymbol{\nabla}(n)) w(n+1)=w(n)+μ((n))
式中, μ \mu μ是控制搜索步长的参数称为自适应增益常数。那么如何选取合适的 μ \mu μ值?
由于推到十分复杂,这里简单给出结论:
0 &lt; μ &lt; λ m a x − 1 0&lt;\mu&lt;\lambda^{-1}_{max} 0<μ<λmax1
式中, λ m a x \lambda_{max} λmax R ( x ( n ) 自 相 关 矩 阵 ) R(x(n)自相关矩阵) Rx(n)的最大特征值。当然有时为了免去计算 R R R的特征值的麻烦,因为 R R R是正定的,所以有:
t r [ R ] = ∑ k = 0 L λ k &gt; λ m a x t_r[R]=\sum_{k=0}^L\lambda_{k}&gt;\lambda_{max} tr[R]=k=0Lλk>λmax
这里, t r [ R ] t_r[R] tr[R] R R R的迹,它可以用输入信号的取样值进行估计,即:
t r [ R ] = ∑ k = 0 L E [ x i 2 ( n ) ] t_r[R]=\sum_{k=0}^LE[x^2_i(n)] tr[R]=k=0LE[xi2(n)]
所以进一步有:
0 &lt; μ &lt; t r − 1 [ R ] 0&lt;\mu&lt;t_r^{-1}[R] 0<μ<tr1

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值