算法--- 圆环回原点问题

1. 题目

参考链接: 字节跳动高频题——圆环回原点问题

圆环上有10个点,编号为0~9。从0点出发,每次可以逆时针和顺时针走一步,问走n步回到0点共有多少种走法。

输入: 2
输出: 2
解释:有2种方案。分别是0->1->0和0->9->0

2. 题解

2.1 解法1: 动态规划

类似 算法—LeetCode 70. 爬楼梯

  1. 状态定义: dp[i] [j] , 表示 走 i 步 回到 j 点有多少种走法
  2. 递推方程: 举例: 走n步到0的方案数=走n-1步到1的方案数+走n-1步到9的方案数, 所以方程为
    dp[i][j] = dp[i-1][(j-1+length)%length] + dp[i-1][(j+1)%length]
  3. 初始化: dp[0][0]=1
  4. 目标: dp[n][0]
public class BackToOrigin {

    class Solution {
        public int backToOrigin(int n) {
            int len = 10;
            int[][] dp = new int[n + 1][len];
            dp[0][0] = 1;
            for (int i = 1; i <= n; i++) {
                // 注意这里j 从 0 开始
                for (int j = 0; j < len; j++) {
                    // dp[i] [j]  ,  表示 走 i 步 回到 j 点有多少种走法
                    dp[i][j] = dp[i - 1][(j - 1 + len) % len] + dp[i - 1][(j + 1) % len];
                }
            }
            return dp[n][0];
        }
    }

    public static void main(String[] args) {
        Solution solution = new BackToOrigin().new Solution();
        System.out.println(solution.backToOrigin(2));
    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值