1. 题目
参考链接: 字节跳动高频题——圆环回原点问题
圆环上有10个点,编号为0~9。从0点出发,每次可以逆时针和顺时针走一步,问走n步回到0点共有多少种走法。
输入: 2
输出: 2
解释:有2种方案。分别是0->1->0和0->9->0
2. 题解
2.1 解法1: 动态规划
- 状态定义: dp[i] [j] , 表示 走 i 步 回到 j 点有多少种走法
- 递推方程: 举例: 走n步到0的方案数=走n-1步到1的方案数+走n-1步到9的方案数, 所以方程为
dp[i][j] = dp[i-1][(j-1+length)%length] + dp[i-1][(j+1)%length] - 初始化: dp[0][0]=1
- 目标: dp[n][0]
public class BackToOrigin {
class Solution {
public int backToOrigin(int n) {
int len = 10;
int[][] dp = new int[n + 1][len];
dp[0][0] = 1;
for (int i = 1; i <= n; i++) {
// 注意这里j 从 0 开始
for (int j = 0; j < len; j++) {
// dp[i] [j] , 表示 走 i 步 回到 j 点有多少种走法
dp[i][j] = dp[i - 1][(j - 1 + len) % len] + dp[i - 1][(j + 1) % len];
}
}
return dp[n][0];
}
}
public static void main(String[] args) {
Solution solution = new BackToOrigin().new Solution();
System.out.println(solution.backToOrigin(2));
}
}