面试高频算法题补充系列:圆环回原点问题

本文介绍了面试中常见的圆环回原点问题,从0点出发,每次可以逆时针或顺时针走一步,讨论了如何通过动态规划求解走n步回到0点的方案数,并提供了相关面经链接供参考。
摘要由CSDN通过智能技术生成

前言

了解更多常考高频算法题可以关注
公众号:一个搬砖的胖子
高频算法网站:https://codetop.cc/
小程序:CodeTop

首先引用一些考到本题的面经原文描述。

面经1:0-12共13个数构成一个环,从0出发,每次走1步,走n步回到0共有多少种走法(2020.09 字节跳动-广告-后端)
面经2:0-8组成一个圆环,从0出发,每次可以逆时针和顺时针走,走n步能回到0有多少种情况(2020.09 字节跳动-people-后端)
面经3:0~9的环,从0出发,N步后能否走回0。(2020.07 字节跳动-电商-后端)
面经4:圆环回原点问题 (2020.08 字节跳动-飞书-后端)

题目描述

圆环上有10个点,编号为0~9。从0点出发,每次可以逆时针和顺时针走一步,问走n步回到0点共有多少种走法。

输入: 2
输出: 2
解释:有2种方案。分别是0->1->0和0->9->0

题目分析

本题考察的是动态规划。
如果你之前做过leetcode的70题爬楼梯,则应该比较容易理解:走n步到0的方案数=走n-1步到1的方案数+走n-1步到9的方案数。
因此,若设dp[i][j]为从0点出发走i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>