前言
了解更多常考高频算法题可以关注
公众号:一个搬砖的胖子
高频算法网站:https://codetop.cc/
小程序:CodeTop
首先引用一些考到本题的面经原文描述。
面经1:0-12共13个数构成一个环,从0出发,每次走1步,走n步回到0共有多少种走法(2020.09 字节跳动-广告-后端)
面经2:0-8组成一个圆环,从0出发,每次可以逆时针和顺时针走,走n步能回到0有多少种情况(2020.09 字节跳动-people-后端)
面经3:0~9的环,从0出发,N步后能否走回0。(2020.07 字节跳动-电商-后端)
面经4:圆环回原点问题 (2020.08 字节跳动-飞书-后端)
题目描述
圆环上有10个点,编号为0~9。从0点出发,每次可以逆时针和顺时针走一步,问走n步回到0点共有多少种走法。
输入: 2
输出: 2
解释:有2种方案。分别是0->1->0和0->9->0
题目分析
本题考察的是动态规划。
如果你之前做过leetcode的70题爬楼梯,则应该比较容易理解:走n步到0的方案数=走n-1步到1的方案数+走n-1步到9的方案数。
因此,若设dp[i][j]为从0点出发走i