1. 题目
给定一个包含了一些 0 和 1 的非空二维数组 grid 。
一个 岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在水平或者竖直方向上相邻。你可以假设 grid 的四个边缘都被
0(代表水)包围着。
找到给定的二维数组中最大的岛屿面积。(如果没有岛屿,则返回面积为 0 。)
示例 1:
[[0,0,1,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,1,1,0,1,0,0,0,0,0,0,0,0],
[0,1,0,0,1,1,0,0,1,0,1,0,0],
[0,1,0,0,1,1,0,0,1,1,1,0,0],
[0,0,0,0,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,0,0,0,0,0,0,1,1,0,0,0,0]]
对于上面这个给定矩阵应返回 6。注意答案不应该是 11 ,因为岛屿只能包含水平或垂直的四个方向的 1 。
示例 2:
[[0,0,0,0,0,0,0,0]]
对于上面这个给定的矩阵, 返回 0。
注意: 给定的矩阵grid 的长度和宽度都不超过 50。
Related Topics 深度优先搜索 数组
👍 502 👎 0
2. 题解
2.1 解法1: DFS
沉岛思想, 当遇到为 1 的格子记录面积并加1
递归函数
参数: 当前格子的坐标 i, j;
作用及返回值: 计算以某个 1 为起点的岛屿面积大小, 返回该岛屿面积
终止条件: i,j 超界, 或该位置不为1, 即不为岛屿, 直接返回 0
class Solution {
public int maxAreaOfIsland(int[][] grid) {
int ans = 0;
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
// 若该位置为岛屿, 则开始计算该岛屿的面积
if (grid[i][j] == 1) {
ans = Math.max(ans, dfs(i, j, grid));
}
}
}
return ans;
}
public int dfs(int i, int j, int[][] grid) {
if (i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] == 0) {
return 0;
}
// 避免重复计算
grid[i][j] = 0;
// 初始面积为 1
int num = 1;
num += dfs(i + 1, j, grid);
num += dfs(i - 1, j, grid);
num += dfs(i, j + 1, grid);
num += dfs(i, j - 1, grid);
return num;
}
}
2.2 解法2: BFS (队列非递归)
每次遍历使用队列计算其面积, 然后滚动比较其最大面积, 其中队列中用数组保存 i,j坐标
注意:
1.每次开始循环前 需要重置 面积
2.每次入队前就需要将该位置置 0 , 否则可能会有重复计算, 同时将面积+1
class Solution {
public int maxAreaOfIsland(int[][] grid) {
int[][] dir = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
int ans = 0;
int curArea = 0;
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (grid[i][j] == 1) {
// 每次开始循环前 需要重置 面积
curArea = 1;
grid[i][j] = 0;
Queue<int[]> queue = new LinkedList<>();
queue.offer(new int[]{i, j});
while (!queue.isEmpty()) {
int[] temp = queue.poll();
int x = temp[0], y = temp[1];
for (int k = 0; k < dir.length; k++) {
int newX = x + dir[k][0];
int newY = y + dir[k][1];
if (newX >= 0 && newX < grid.length && newY >= 0 && newY < grid[0].length && grid[newX][newY] == 1) {
// 这里注意在每次入队前就需要将该位置置 0 , 否则可能会有重复计算, 同时将面积+1
curArea++;
grid[newX][newY] = 0;
queue.offer(new int[]{newX, newY});
}
}
}
}
ans = Math.max(ans, curArea);
}
}
return ans;
}
}