1. 题目
参考链接: 木头切割问题
给定长度为n的数组,每个元素代表一个木头的长度,木头可以任意截断,从这堆木头中截出至少k个相同长度为m的木块。已知k,求max(m)。
输入两行,第一行n, k,第二行为数组序列。输出最大值。
输入
5 5
4 7 2 10 5
输出
4
解释:如图,最多可以把它分成5段长度为4的木头
ps:数据保证有解,即结果至少是1。
2. 题解
2.1 解法1: 暴力法
主要思路
遍历 1 到 木棍最长的长度, 每次遍历的长度作为 m, 以 m 为长度截取木头, 若能截取出 k个长度为m的木块,则更新最大值,最后输出最大值即可
public class CutWood {
class Solution {
public int cutWood(int[] nums, int k) {
// 找到最大长度的木头
int maxLen = 0;
for (int i = 0; i < nums.length; i++) {
maxLen = Math.max(maxLen, nums[i]);
}
int ans = 0;
int curLen = 1;
while (curLen <= maxLen) {
int cnt = 0;
// 以 curLen 截取木头, 查找能截取的最多段
for (int i = 0; i < nums.length; i++) {
cnt += nums[i] / curLen;
}
// 如果能截出 k段以上, 则更新结果
if (cnt >= k) {
ans = Math.max(ans, curLen);
}
curLen++;
}
return ans;
}
}
public static void main(String[] args) {
Solution solution = new CutWood().new Solution();
int[] nums = {4, 7, 2, 10, 5};
System.out.println(solution.cutWood(nums, 5));
}
}
时间复杂度也很容易看出来是O(n * len), len为木头中最大的长度
2.2 解法2: 二分
方法一在[1,max]寻找最大长度时是顺序遍历,由于其有序,我们可借助二分来快速检出结果。如果能截出来k个长度为x的木块,说明答案肯定 >= x,则接下来只需在[x,max]中找m最大满足条件的长度。反之则说明答案 < x,则在[1,x-1]中寻找结果。这样我们每次可以舍弃1/2的情况,因此使用二分的时间复杂度是O(n * log Len)。
例如: 如果长度为 x 截不出来 k个木头, 说明比 x 大的长度也不行, 只能从小于 x 的长度截取木头
实际编写代码时, 相当于找到最后一个 cnt >= k 的长度 len
public class CutWood {
class Solution {
public int cutWood(int[] nums, int k) {
// 找到最大长度的木头
int maxLen = 0;
for (int i = 0; i < nums.length; i++) {
maxLen = Math.max(maxLen, nums[i]);
}
int left = 1, right = maxLen;
while (left < right) {
int mid = left + right + 1 >> 1;
// 以 mid 长度截取木头, 查找能截取的最多段
int cnt = 0;
for (int i = 0; i < nums.length; i++) {
cnt += nums[i] / mid;
}
// 如果能截出 k段以上, 则更新结果
if (cnt >= k) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}
}
public static void main(String[] args) {
Solution solution = new CutWood().new Solution();
int[] nums = {4, 7, 2, 10, 5};
System.out.println(solution.cutWood(nums, 5));
}
}
二分编写注意点
- 求的是 最后一个 cnt >= k 的长度, 所以每次要向右移动, 于是向上取整, 有
mid = left + right + 1 >> 1
, 有+1 - 考虑两个元素的情况, 如果 mid 落在右边那一个元素, 这时 cnt < k, 所以 right = mid - 1
若 right= mid , 则下一次 mid 仍然不变, 无法跳出循环
总结:
二分法的两种搭配:
第一种:(一般用于取 第一个 符合题意的值)
int mid = left + right + 1 >> 1;
left = mid;
right = mid - 1;
第二种:(一般用于 取 最后一个符合题意的值)
int mid = left + right + 1 >> 1;
left = mid;
right = mid - 1;
有关更多二分的详细理解可参考: 算法——LeetCode34. 在排序数组中查找元素的第一个和最后一个位置(二分查找及二分法要点总结)