算法---木头切割问题(二分法)

本文介绍如何利用暴力法和二分查找优化策略解决长度为n的木头切割问题,通过两种方法求解在给定k的情况下最大可能的木块长度m。暴力法的时间复杂度为O(n*len),而二分法提升至O(n*logLen)。两种解法的实现细节和适用场景对比清晰易懂。
摘要由CSDN通过智能技术生成

1. 题目

参考链接: 木头切割问题

给定长度为n的数组,每个元素代表一个木头的长度,木头可以任意截断,从这堆木头中截出至少k个相同长度为m的木块。已知k,求max(m)。

输入两行,第一行n, k,第二行为数组序列。输出最大值。

输入
5 5
4 7 2 10 5
输出
4
解释:如图,最多可以把它分成5段长度为4的木头

图片

ps:数据保证有解,即结果至少是1。

2. 题解

2.1 解法1: 暴力法

主要思路

遍历 1 到 木棍最长的长度, 每次遍历的长度作为 m, 以 m 为长度截取木头, 若能截取出 k个长度为m的木块,则更新最大值,最后输出最大值即可

public class CutWood {

    class Solution {
        public int cutWood(int[] nums, int k) {
            // 找到最大长度的木头
            int maxLen = 0;
            for (int i = 0; i < nums.length; i++) {
                maxLen = Math.max(maxLen, nums[i]);
            }
            int ans = 0;
            int curLen = 1;
            while (curLen <= maxLen) {
                int cnt = 0;
                // 以 curLen 截取木头, 查找能截取的最多段
                for (int i = 0; i < nums.length; i++) {
                    cnt += nums[i] / curLen;
                }
                // 如果能截出 k段以上, 则更新结果
                if (cnt >= k) {
                    ans = Math.max(ans, curLen);
                }
                curLen++;
            }
            return ans;
        }
    }

    public static void main(String[] args) {
        Solution solution = new CutWood().new Solution();
        int[] nums = {4, 7, 2, 10, 5};
        System.out.println(solution.cutWood(nums, 5));
    }

}

时间复杂度也很容易看出来是O(n * len), len为木头中最大的长度

2.2 解法2: 二分

方法一在[1,max]寻找最大长度时是顺序遍历,由于其有序,我们可借助二分来快速检出结果。如果能截出来k个长度为x的木块,说明答案肯定 >= x,则接下来只需在[x,max]中找m最大满足条件的长度。反之则说明答案 < x,则在[1,x-1]中寻找结果。这样我们每次可以舍弃1/2的情况,因此使用二分的时间复杂度是O(n * log Len)。

例如: 如果长度为 x 截不出来 k个木头, 说明比 x 大的长度也不行, 只能从小于 x 的长度截取木头

实际编写代码时, 相当于找到最后一个 cnt >= k 的长度 len

public class CutWood {

    class Solution {
        public int cutWood(int[] nums, int k) {
            // 找到最大长度的木头
            int maxLen = 0;
            for (int i = 0; i < nums.length; i++) {
                maxLen = Math.max(maxLen, nums[i]);
            }
            int left = 1, right = maxLen;
            while (left < right) {
                int mid = left + right + 1 >> 1;
                // 以 mid 长度截取木头, 查找能截取的最多段
                int cnt = 0;
                for (int i = 0; i < nums.length; i++) {
                    cnt += nums[i] / mid;
                }
                // 如果能截出 k段以上, 则更新结果
                if (cnt >= k) {
                    left = mid;
                } else {
                    right = mid - 1;
                }
            }
            return left;
        }
    }

    public static void main(String[] args) {
        Solution solution = new CutWood().new Solution();
        int[] nums = {4, 7, 2, 10, 5};
        System.out.println(solution.cutWood(nums, 5));
    }

}

二分编写注意点

  1. 求的是 最后一个 cnt >= k 的长度, 所以每次要向右移动, 于是向上取整, 有 mid = left + right + 1 >> 1, 有+1
  2. 考虑两个元素的情况, 如果 mid 落在右边那一个元素, 这时 cnt < k, 所以 right = mid - 1
    若 right= mid , 则下一次 mid 仍然不变, 无法跳出循环

总结:

二分法的两种搭配:

第一种:(一般用于取 第一个 符合题意的值)

int mid = left + right + 1 >> 1;
left = mid;
right = mid - 1;

第二种:(一般用于 取 最后一个符合题意的值)

int mid = left + right + 1 >> 1;
left = mid;
right = mid - 1;

有关更多二分的详细理解可参考: 算法——LeetCode34. 在排序数组中查找元素的第一个和最后一个位置(二分查找及二分法要点总结)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值