自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

朱骥伦的博客

专注图像处理、深度学习相关内容

  • 博客(41)
  • 资源 (4)
  • 收藏
  • 关注

原创 雷达成像原理(一)合成孔径成像Chirp-Scaling

雷达成像原理什么是雷达图像分辨率距离分辨方位分辨多普勒合成孔径聚焦处理什么是雷达图像分辨率距离分辨距离向分辨率ρ=c/2f其中c为光速,f为信号频率的宽度若信号频带为100MHz,距离向分辨率为1.5m当信号频带不断增大时,距离分辨率可不断提高,此时接收到的回波是分布开的一维距离像,横轴称为接收到回波的时间,纵轴为接收到信号的幅度大小,当接收到的幅度大于一定程度时就可以认定为目标,根据在该幅度对应的时间就可求得目标的距离方位分辨多普勒物体辐射的波长会因为波源和观测者的相对运动而产生

2021-12-08 19:22:27 6877 8

原创 STL(一)空间配置器的实现

空间配置器内存分配和释放第一层配置器第二层配置器内存池分配回收总结内存分配和释放当我们 new 一个对象的时候,包含两个操作,首先 operator_new 分配内存,再调用构造函数构造对象内容但我们 delete 一个对象的时候,同样先调用析构函数,再调用 operator_delete 释放内存STL 将这个过程薄薄的包装了一下,实际上没优化配置器定义于 中, 中又包含 <stl_alloc.h> <stl_construct.h>内存配置由 alloc::all

2021-11-23 17:15:25 407

原创 Go如何并发(三)广播

服务器实现用户上线广播数据结构流程代码数据结构type Server struct{ Ip string Port int OnlineMap map[string]*User mapLock sync.RWMutex Message chan string}type User struct{ Name string Addr string channel chan string conn net.Conn}接口:

2021-11-22 15:19:01 397

原创 Go如何并发(二)案例 & code

Go并发案例 & code第一个goroutine同步channel无缓冲channel单向无缓冲channel有缓冲channel第一个goroutinepackage mainimport ( "fmt" "time")func print(){ fmt.Println("I'm a go routine.")}func main(){ fmt.Println("Go routine begin."); go print(); fmt.Println("Go

2021-11-19 11:53:01 379

原创 Go如何并发(一)goroutine模型与调度策略

goroutine模型与调度策略单进程操作系统多线程/多进程操作系统1:N模型M:N模型goroutinegoroutine早期调度器GMP调度器设计策略复用线程work stealinghand off并行抢占全局队列学习刘丹冰《8小时转职golang工程师》,本节都是原理单进程操作系统早期的单进程操作系统,可以理解为只有一个时间轴,CPU顺序执行每一个进程/线程,这种顺序执行的方式,CPU同一时间智能处理一个指令,一个任务一个任务去处理这样就会导致进程阻塞的话,CPU就会卡在当前进程,一直在

2021-11-17 14:20:16 284

原创 TCP/IP协议族

TCP/IP协议族体系结构 & 协议数据链路层网络层传输层应用层封装&分用封装分用ARPDNSsocket体系结构 & 协议TCP/IP协议族是一个四层协议系统,自底向上分别是数据链路层、网络层、传输层和应用层数据链路层数据链路层主要处理数据在物理媒介上的传输,实现网卡接口的网络驱动程序,网络驱动程序为上层协议提供一个统一接口数据链路层常用协议为ARP协议 & RARP协议,实现了网络IP地址和机器物理地址之间的相互转换。网络层使用IP寻找机器,数据链路层使用物理

2021-11-10 15:55:56 1527

原创 音频信号处理(三)语谱图

语谱图在整段语音信号中选取一段清音和一段浊音,分别用矩形窗、汉明窗进行处理,再针对不同的窗长的浊音、清音进行短时傅里叶分析,最后对整段语音画出语谱图。1.加窗处理截取60ms浊音、清音信号[x,fs]=audioread('myVoice.wav');x=x(:,1);n=length(x);z=x(46000:49968); %20msz=z/max(abs(z));figure(2);subplot(2,1,1);plot(z),title('浊音信号');q=x(1000:49

2021-08-30 10:38:52 1277

原创 音频信号处理(二)语音信号采集处理与基音周期

语音信号采集与处理语音信号采集根据自相关估计基音周期语音信号采集先创建用于录制音频的对象,在创建时确定录制音频的采样率、位数、通道数,分别录制,各录一段5秒钟的音频,并保存r1=audiorecorder(44100,16,1);%16位单通道r2=audiorecorder(44100,8,1);%8位单通道disp('1start');recordblocking(r1,5);%确定时间disp('1end2start');recordblocking(r2,5);disp('2end

2021-08-30 10:30:10 898

原创 形式语言与自动机之有限状态自动机

有限状态自动机有限状态自动机状态转换表状态转换图确定有限状态自动机(DFA)不确定有限状态自动机(NFA)有限状态自动机有穷状态自动机是具有离散输入和输出的系统的一种数学模型。其主要特点有以下几个方面:(1)系统具有有穷个状态,不同的状态代表不同的意义。按照实际的需要,系统可以在不同的状态下完成规定的任务。(2)我们可以将输入字符串中出现的字符汇集在一起构成一个字母表。系统处理的所有字符串都是这个字母表上的字符串。(3)系统在任何一个状态下,从输入字符串中读入一个字符,根据当前状态和读入的

2021-07-16 10:02:21 160 1

原创 KMP算法

KMP算法概述Brute-Force第一次改进快速求next数组概述KMP是三位大牛:D.E.Knuth、J.H.Morris和V.R.Pratt同时发现的。其中第一位就是《计算机程序设计艺术》的作者KMP 算法是 D.E.Knuth、J,H,Morris 和 V.R.Pratt 三位神人共同提出的,称之为 Knuth-Morria-Pratt 算法,简称 KMP 算法。该算法相对于 Brute-Force(暴力)算法有比较大的改进,主要是消除了主串指针的回溯,从而使算法效率有了某种程度的提高。问题

2021-07-16 10:01:51 60 3

原创 音频信号处理(一)均衡器

均衡器概述全通滤波器延迟搁架滤波器(斜坡滤波器)峰值滤波器概述低通、高通滤波器、带通、带阻滤波器都是通过衰减了高于或低于截止频率的频谱,但均衡器是通过增强某些频带,而别的频带不受影响来得到想要的频谱。从应用角度理解,均衡器可以分为图示均衡器和参量均衡器,图示均衡器将20~20000Hz划分为若干个频段,每个频段对应一个对电平进行增益或衰减的调节器,根据用户需要对特定频段进行调节;参量均衡器不划分频段,可对任意一个频率点以及带宽内所有的点进行控制,通过调整带宽使得控制可以精确也可以模糊那么如何实现对特

2021-06-29 17:44:46 2035 1

原创 论文笔记:学习紧密的几何特征Learning Compact Geometric Features

Learning Compact Geometric Features概述CGF论文地址:Learning Compact Geometric Features概述这篇文章是点云配准领域的一篇文章,为了解决3D局部特征描述的方法,提出了一种独特的学习特征的方法,其中这些特征代表了非结构化点云中某个点上的局部几何;学习的过程则是设计了一种hand-crafted 3D local feature descriptor,将其作为网络的输入,网络的输出则为learning-based 3D local fe

2021-06-29 17:22:34 188

原创 数字信号处理(三)滤波器设计

滤波器设计ButterWorth模拟低通滤波器切比雪夫1型模拟低通滤波器切比雪夫2型椭圆滤波器任意模拟滤波器设计ButterWorth模拟低通滤波器增益函数G(w)=20lg|H(jw)|BW模拟低通滤波器频域特性其中,N为滤波器阶数,wc(截止频率)为3db截频当w=0时,|Hjw|=1,当w=∞时,|Hjw|=0,在wc这一点衰耗值为10lg2=3db设计步骤:1、确定模拟滤波器阶数N根据wp,ws,计算出Ap,AsA(w)=-10lg|H(jw)|²代入得N取整数即可2

2021-06-04 16:11:28 1325

原创 数字信号处理(二)离散傅里叶变换

离散时间信号和系统的频域分析离散时间信号的傅里叶变换离散时间信号z域分析离散时间线性时不变系统频域分析离散时间线性时不变系统z域分析离散时间信号的傅里叶变换离散周期信号的傅里叶表示:周期为N的任意周期序列x[k]可用N个虚指数序列表示:每一个xk唯一的对应一个Xm,时域信号不同,虚指数序列前面的加权系数Xm不同,Xm称为离散周期信号xk的频谱离散时间信号z域分析离散时间线性时不变系统频域分析离散时间线性时不变系统z域分析...

2021-06-04 11:09:49 416

原创 数字信号处理(一)时域采样定理

数字信号处理概论离散信号表示单位脉冲序列单位阶跃序列矩形序列时域采样定理离散时间采样的频域分析概论研究内容:离散的信号时域分析序列的傅里叶变换z变换离散傅里叶变换快速傅里叶变换离散系统分析与设计离散信号表示模拟信号(连续时间信号):自变量连续,信号幅度连续取值离散时间信号:对模拟信号采样,时间离散,幅度上没有量化数字信号:时间离散,幅度量化为有限字长的二进制数时域采样:在时间轴上等间隔取值幅度量化:因为模拟信号幅度连续,无法处理,因此进行量化变成数字最终得到数字信号x(n)=

2021-06-03 20:11:33 3115

原创 计算摄像学之光场的空域重聚焦

计算摄像学之光场的空域重聚焦光场相机与传统相机原理缺点重聚焦双平面法光场相机与传统相机我们知道传统相机在拍摄时需要对焦,如果不对焦就会失焦,但在拍摄动态目标时,传统相机就难以在短时间内对焦到目标上。光场相机在拍摄时,相机捕捉大量光线资料并选定焦点,这样在拍摄结束后我们可以根据需要弹性选择结果。原理一般相机用主镜头捕捉光线,聚焦在镜头后的胶片或感光器上,光场相机通过在主镜头焦距处加微透镜阵列实现记录光线,再通过光场成像定理变焦。光线通过主镜头后,打到微透镜阵列上再次成像,在微透镜阵列之后的像素

2021-05-11 22:32:20 172

原创 图像处理之opencv&python实现人脸跟踪

opencv&c++使用haar级联实现人脸跟踪haar级联实现haar级联级联分类器是什么?级联分类器是一个把弱分类器串联成强分类器的过程。弱分类器是性能受限的分类器,没法正确的区分所有事物,如果你的问题很简单,他的输出结果会在可接受的范围内。强分类器可以正确的对数据进行分类提取haar特征,需要计算图像中封闭矩形区域的像素值总和,为了避免计算冗余,我们建立图像的积分图,通过提供矩形区域四角坐标,来得到这部分区域的像素和。在实际计算中,提取图像的haar特征需要计算多个尺度矩形的和,在实

2021-05-07 16:54:42 299

原创 深度学习之ISAR超分辨率成像

深度学习之ISAR超分辨率成像ISAR数据集ISAR雷达可分为穿墙雷达、合成孔径雷达(SAR)、逆合成孔径雷达(ISAR)。其中ISAR可用于导弹防御、目标分类、和环境监测等功能。但传统雷达成像由于物理因素和自身条件限制,导致雷达成像分辨率低、栅瓣、散焦。ISAR成像算法最初有线性时频变换,如STFT、gabor,优点是计算简单,但收到窗口大小选择的影响,要在时间分辨率和频率分辨率上做一个平衡。因此后来提出了WVD和重新分配算法RSP,WVD产生的时频分布图伴随交叉项,会降低ISAR成像质量,RSP由

2020-12-14 17:03:05 2067

原创 论文笔记:黑暗图像局部和全局增强方法在图像增强中的应用

黑暗图像局部和全局增强方法在图像增强中的应用局部增强全局增强实验结果论文地址:https://ieeexplore.ieee.org/document/8071892局部增强局部增强用于获取图像细节,根据图像的梯度增强局部细节,处理了被全局方法忽略的像素,这里使用的局部方法是unsharp masking,在这个方法中,图像的锐化是通过减去一个非锐化的图像来实现的,具体步骤如下:1.模糊图像2.mask = 原图 - 模糊图3.将mask添加到原图,即锐化图像 = 原图 + w*mask,其中w

2020-10-22 22:16:55 585

原创 论文笔记:基于透射率修正的湍流模型与动态调整retinex的水下图像增强

基于透射率修正的湍流模型与动态调整retinex的水下图像增强先验知识lab空间瑞利分布暗通道先验理论湍流模型维纳滤波导向滤波retinex增强MSR颜色恢复本文流程匀光预处理改进的湍流模型retinex水下图像增强实验结果先验知识lab空间瑞利分布暗通道先验理论湍流模型维纳滤波导向滤波retinex增强MSR颜色恢复本文流程属下图像增强方法现在大多数存在自适应差、鲁棒性差的问题。该文章提出的算法优点在于考虑图像增强的偏色情况,抑制图像噪声,且改善了其他模型参数简单的问题,具有良好的通

2020-10-21 16:59:48 647

原创 论文笔记:自然图像的卷积去模糊Convolutional Deblurring for Natural Imaging

自然图像的卷积去模糊前言论文地址:自然图像的卷积去模糊前言

2020-09-28 20:24:05 763

原创 论文笔记:水下图像增强中的颜色平衡与融合 Color Balance and Fusion for Underwater Image Enhancement

水下图像增强中的颜色平衡与融合简介正文水下光传播过去相关工作水下白平衡简介文中介绍了一种有效的技术,以做到水下捕获的图像的增强并且减少了介质散射和吸收。方法是在一个单一的图像方法,不需要专门的硬件或水下条件或场景结构的知识。它建立在两幅图像的混合上,这两幅图像是直接从原始退化图像的彩色补偿和白平衡版本得到的。定义了要融合的两幅图像及其相关的权值映射,以促进边缘和颜色对比度对输出图像的转移。为了避免剧烈的权值变换在重建图像的低频分量中产生伪影,我们还采用了多尺度融合策略。我们广泛的定性和定量评估显示,增强

2020-09-25 10:41:13 3709 9

原创 最优化问题之物料分割

最优化问题之物料分割背景知识建模过程参考文献背景知识物料切割是把原材料按企业要求进行加工,力求减少余料的损失,加工的第一步便是对原材料进行分割,现如今,这一步通常由计算机来完成,有定义如下:(1)对原材料的规格的多样定义为集合R,对于集合R分解成多个集合元素,R_1, R_2,……, R_n,定义这些子集,对于i,j,当i=j时,R_i和R_j的密度重量相同,,当i≠j时,表示原材料密度重量不同。(2)假设企业所需要生产的物料规格为集合S,对集合S分解为m个元素S_1, S_2,……, S_m。

2020-09-24 21:56:56 2228

原创 图像处理领域顶级期刊及会议

图像处理领域顶级期刊及论文期刊1.国际期刊CCF推荐期刊 A类:IEEE Transactions on Image Processing(TIP),出版社:IEEECCF推荐期刊C类:IET Image Processing(IET-IPR),出版社:IET(The Institution of Engineering and Technology)International Journal of Computer Vision 出版社:Springer USIEEE Transactions

2020-09-16 10:35:44 7208 2

原创 图像处理之自动色阶opencv&c++

自动色阶第一步,分别统计各通道(红/绿/蓝)的直方图。第二步,分别计算各通道按照给定的参数所确定的上下限值。什么意思呢,比如对于蓝色通道,我们从色阶0开始向上累加统计直方图,当累加值大于LowCut所有像素数时,以此时的色阶值计为BMin。然后从色阶255开始向下累计直方图,如果累加值大于HighCut所有像素时,以此时的色阶值计为BMax。第三步,按照我们刚刚计算出的MinBlue/MaxBlue构建一个隐射表,隐射表的规则是,对于小于MinBlue的值,则隐射为0(实际上这句话也不对,隐射为多少是

2020-09-14 16:52:56 1044

原创 图像处理之基于暗通道先验理论的图像去雾

暗通道先验理论的图像去雾通常彩色图像都包括三个通道,即RGB三通道,也可以理解而成一张图片又三层同样大小的RGB(光学三原色:红绿蓝)三色堆叠而成,而图片实质上是由一个个像素组成的,对应于RGB三色来说,每一种颜色都是由这三原色组合而成,比如红色为(255,0,0),绿色为(0,255,0),粉红为(255,192,203),也就是说一张彩色图片中的每个像素都是以这种形式来表示的。那么我们通常所说的暗通道,即清晰无雾的图片中除天空区域(因为天空区域或者白色区域和雾的特征较为接近)外的任一局部区域像素至少

2020-09-14 16:17:41 1263 1

原创 opencv基础之边缘保留滤波算法

边缘保留滤波算法高斯双边滤波Mean-shift均值迁移滤波高斯双边滤波高斯滤波考虑了图像空间位置对权重的影响,离中心点越近权重越大。但是高斯滤波没有考虑图像中的像素分布对图像卷积输出的影响。而高斯双边滤波则充分考虑了这一点,对像素值空间分布差异较大的进行保留从而可以完整地保留图像的边缘信息。图像一定区域内的像素分布是有一定规律的,要保留边缘信息,就应当只让像素值相近的参与计算,对于差异较大的则不参与卷积计算。所谓双边滤波,就是指同时考虑了空间位置和像素值分布这两点。opencv API:voi

2020-09-12 22:03:51 727

原创 opencv基础之高斯模糊

高斯模糊图像的模糊和平滑是同一个层面的意思,平滑的过程就是一个模糊的过程。而图像的去噪可以通过图像的模糊、平滑来实现(图像去噪还有其他的方法)那么怎么才能对一幅图像进行模糊平滑呢?图像的模糊平滑是对图像矩阵进行平均的过程。相比于图像锐化(微分过程),图像平滑处理是一个积分的过程。图像平滑过程可以通过原图像和一个积分算子进行卷积来实现。最简单的积分算子就是全1算子利用全1算子可以对图像进行模糊平滑操作,有一定的去噪能力。利用高斯算子进行模糊处理就是我们常听到的高斯模糊。高斯滤波是一种线性平滑滤波,适

2020-09-12 20:42:35 2340

原创 opencv基础之图像读写与形态学操作

opencv基础图像读写形态学操作图像读写利用Mat类保存需要读写的图像,Mat类是用于保存图像以及其他矩阵数据的数据结构imread()函数是用于读取文件中的图片到OpenCV中,说明如下Mat imread(const string& filename, intflags=1);第一个参数,const string&类型的filename,填我们需要载入的图片路径名,在Windows操作系统下,OpenCV的imread函数支持如下类型的图像载入。第二个参数,int类型的fl

2020-09-12 20:14:48 107

原创 图像处理之基于直方图均衡化的图像增强

图像处理之基于直方图均衡化的图像增强图像直方图直方图均衡化参考代码实验结果图像直方图图像直方图是以0-255作为横坐标,以图中对应像素值出现的次数作为纵坐标的图像统计图,利用图像直方图可以比较直观的看到图像的统计信息直方图均衡化直方图均衡是根据变换函数计算的得到的,可以理解为在任意间隔内的灰度密度等于灰度间隔除以总灰度级,那么这个灰度分布就是均衡的。参考代码void HistogramEqualize(BYTE *pImg, int width, int height){ BYTE *p

2020-09-12 11:35:37 1410

原创 信号处理之IIR设计

信号处理之IIR设计巴特沃斯与切比雪夫I型模拟低通滤波器巴特沃斯与切比雪夫I型模拟低通滤波器设计数字滤波器,要求通带波动(Rp)不大于3dB和阻带衰减(Rs)不小于15dB,ωp=0.2π,ωs=0.36π。请分别设计巴特沃斯与切比雪夫I型模拟低通滤波器。rp=3;rs=15;OmegaP=0.2*pi;OmegaS=0.36*pi;[N,OmegaC]=buttord(OmegaP,OmegaS,rp,rs,'s');[b,a]=butter(N,OmegaC,'s');w0=[Omeg

2020-09-11 16:33:30 264 2

原创 信号处理之FFT与CZT变换

FFT与CZT变换FFTCZT变换FFT用FFT算法计算序列x(n)=[2,1,3,2,1,5,1]与h(n)=[1,2,-1,-3]的线性卷积,画出输入、输出序列的波形图。x=[2 1 3 2 1 5 1]; h=[1 2 -1 -3]; N=length(x)+length(h)-1;n=0:N-1;x=[x,zeros(1,N-length(x))];h=[h,zeros(1,N-length(h))];X=fft(x);H=fft(h);Y=X.*H;y=ifft(Y);

2020-08-22 11:36:52 2614

原创 信号处理之圆周卷积与DFT频率分辨率分析

信号处理之圆周卷积与DFT频率分辨率分析求4点圆周卷积与线性卷积DFT频率分辨率分析求4点圆周卷积与线性卷积一、 已知x1(n)=[2,4,3,1],x2(n)=[2,1,3],采用时域和频域两种方法分别求它俩的4点圆周卷积与线性卷积。时域方法function y=cirshift(x,m,N) if length(x)>N error('N length should >=x length')endx=[x zeros(1,N-length(x))];n=[0:1

2020-08-22 11:29:36 1222

原创 信号处理之DTFT及LSI响应

信号处理之DTFT及LSI响应验证实信号的对称性质滤波器的幅度和相位响应验证实信号的对称性质设建立序列奇偶分解evenodd函数,计算出x(n)的偶部和奇部分量,并画出原序列和分量序列列图形;求分量序列的DTFT,并划出图形、验证实信号DTFT的对称性质。序列奇偶分解采用xe(n)=[x(n)+x(-n)]*1/2;xo(n)=[x(n)-x(-n)]*1/2;实验代码如下:t= -3:1:12;N=16;x=cos(t*pi/2);xf=fliplr(x);xe=(x+xf)*(1

2020-08-22 11:20:10 545

原创 图像处理之道路行道线检测

图像处理之路行道线检测实验思路实验代码总结实验思路通过将垂直投影与一维滤波相减与一阈值比较来记录LR,找到LR的中点即为可能存在于行道线上的点,将这些点进行霍夫变换,得到一条落点最多的极坐标曲线,即为行道线所在的线。实验代码计算投影:void CalProj(BYTE *pImg, int width, int height,int *projOrg){int realHeight = height / 15;int x, y; BYTE *pRow, *pCol; memset(p

2020-08-22 11:12:54 1173

原创 图像处理之基于链码跟踪的大米数量检测

图像处理之基于链码跟踪的大米数量检测// TestProjects.cpp : Defines the entry point for the console application.//#include <windows.h>#include <stdio.h>#include <stdlib.h>#include <string.h>#include <math.h>#include <time.h>#includ

2020-08-22 11:08:55 182

原创 图像处理之分离大米与道路检测

图像处理之otsuotsu大米分离道路检测otsu大米分离原图与在ps中获得最小值滤波与高斯模糊后的图像:用原图减去处理后的图像,用otsu算出该图像的分割阈值,进行二值化即可查表法进行图像相减的代码如下: void imgSub(BYTE *pImgA, BYTE *pImgB, int width, int height) { int LUT[256]; BYTE *pA, *pB; BYTE *pEndA = pImgA + width * height, *pEndB =

2020-08-22 11:03:08 191

原创 图像处理之LUT表的使用

LUT表的使用查表法的应用比较普通算法与查LUT表法计算伽马变换和图像灰度化的快慢程度均值方差规定化计算图像的均值方差用查表法计算两图像相减的绝对值;除法的快速计算查表法的应用比较普通算法与查LUT表法计算伽马变换和图像灰度化的快慢程度伽马变换:void GryImageGamaCorrect_Slow(BYTE *pGryImg,double gama,int nSize){ for(int i=0;i<nSize;i++) { *(pGryImg+i) = min(25

2020-08-22 10:54:46 1997

原创 图像处理之目标边缘检测

图像处理之目标边缘检测实验分析sobel算子进行边缘检测结果实验分析将图像中的数字部分通过sobel算子边缘检测、转化为积分图后找出目标区域。我的想法是在边缘检测后进行简单的二值化,凸显出数字部分,再在积分图中将目标区域凸显出来,找到数字区域左上角的坐标,从左上至右下画矩形。sobel算子进行边缘检测用Soble算子边缘检测利用的是SobelGrayImage这个函数;因为我发现数字旁边会有比较浅的白点,所以之后进行一次简单的二值化: void bin(BYTE *pSrc, int wid

2020-08-22 10:45:39 992

原创 图像处理之快速滤波

图像平滑之快速滤波快速中值滤波快速均值滤波快速积分图滤波快速中值滤波在中值滤波中,需要计算每一块小的直方图的中值,如果每次都算一个新的直方图就会很麻烦,但是像素点每右移一个单位,直方图实际上只改变了最左侧一列和最右侧一列,其余的数据可以继续使用,并且这个中值的改变也不会太大,用这种方法避免了重复访问和重复运算。代码如下:int calMidValue(int hist[], int midLocation){ int sum = 0; for (int i = 0; i < 256; +

2020-08-22 10:36:51 405

matlab emd工具箱

matlab emd工具箱EMD其实就是一种对信号进行分解的方法,与傅里叶变换、小波变换的核心思想一致,大家都想将信号分解为各个相互独立的成分的叠加;只不过傅里叶变换以及小波变换都要求要有基函数,而EMD却完全抛开了基函数的束缚,仅仅依据数据自身的时间尺度特征来进行信号分解,具备自适应性。由于无需基函数,EMD几乎可以用于任何类型信号的分解,尤其是在非线性、非平稳信号的分解上具有明显的优势。

2020-11-27

c语言课程设计之mfc飞机大战

一款交互式MFC基于单文本的交互式小游戏。实现关卡功能、boss、追踪子弹、技能、贴图采用bmp格式、bgm采用wav格式

2020-08-22

c语言课程设计之计算器.rar

c语言课程设计之基于mfc的支持多进制下的逆波兰式计算器,可实现加减乘除,括号运算,小数运算等 所使用的开发环境: ·Virtual Studio 2017 ·Windows 10 专业版 ·基于MFC的单文本应用程序

2020-08-22

IntelligentScissor-master.rar

我们提出一种名为intelligent scissors的工具,可以用来进行图像的分割,手动跟踪不准确且费力,而intelligent scissors可以快速提取对象,鼠标点击物体边缘即有一条线捕捉并包裹物体

2020-08-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除