蓝桥杯 历届试题 连号区间数 By Assassin 简单暴力或者并查集

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_35078631/article/details/53740363

问题描述

小明这些天一直在思考这样一个奇怪而有趣的问题:

在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:

如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。

当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。
输入格式

第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。

第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。
输出格式

输出一个整数,表示不同连号区间的数目。
样例输入1
4
3 2 4 1
样例输出1
7
样例输入2
5
3 4 2 5 1
样例输出2
9

思路:讲真的看到50000的数据规模我就尿了,没想出来啥,看了看提示是并查集?结果暴力能过?实在是不给力啊!暴力两层for循环,我们发现如果[L,R]组成连续区间,必有 :
区间最大-区间最小==R-L

然后暴力,太随便了。。。

#include<bits/stdc++.h>
#define input freopen("input.txt","r",stdin)
using namespace std;
int a[50005];
int main(){
    int n,i,j;
    while(scanf("%d",&n)!=EOF){
        for(i=1;i<=n;i++){
            scanf("%d",&a[i]);
        }
        int ans=0;
        for(i=1;i<=n;i++){
            int minn=n;
            int maxx=1;
            for(j=i;j<=n;j++){
                maxx=max(maxx,a[j]);
                minn=min(minn,a[j]);
                if(j-i==maxx-minn){
                    ans++;
                }
            }
        }
        cout<<ans<<endl;
    }
    return 0;
}

毛线并查集啊!什么鬼啊!!!┏┛墓┗┓…(((m -__-)m
但是应该可以想到,一般情况下50000数据规模并查集也是够极限了,所以我觉得并查集的提示价值在于提示你,别怕暴力。。。

展开阅读全文

没有更多推荐了,返回首页