时间限制:1.0s 内存限制:256.0MB
小明这些天一直在思考这样一个奇怪而有趣的问题:
在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:
如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。
当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。
第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。
第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。
输出一个整数,表示不同连号区间的数目。
3 2 4 1
3 4 2 5 1
9
枚举起点和终点,如果每个区间都专门去判断是否为连续区间,肯定超时,但是每个连续区间都有一个特点就是它的最大值和最小值的差一定等于区间长度-1比如样例序列 3 2 4 1 其中3 2 4为一个连续区间4 - 2 = 2 = 3 - 1,所以枚举终点的过程中顺便求出区间最大与最小值,若max - min = end - start,自然是连续区间 ans+1.
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 50005;
int n, ans;
int a[maxn];
int main()
{
int start, end;
ans = 0;
scanf("%d", &n);
for(int i = 0;i < n;i++)
{
scanf("%d", &a[i]);
}
for(start = 0;start < n;start++)
{
int s = maxn, e = 0;
for(end = start;end < n;end++)
{
s = min(s, a[end]);
e = max(e, a[end]);
if(e - s == end - start)
{
ans++;
}
}
}
printf("%d\n", ans);
return 0;
}