连号区间数 蓝桥杯历届试题

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_40339331/article/details/79657481

时间限制:1.0s   内存限制:256.0MB

问题描述

小明这些天一直在思考这样一个奇怪而有趣的问题:

在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:

如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。

当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。

输入格式

第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。

第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。

输出格式

输出一个整数,表示不同连号区间的数目。

样例输入1
4
3 2 4 1
样例输出1
7
样例输入2
5
3 4 2 5 1
样例输出2

9

枚举起点和终点,如果每个区间都专门去判断是否为连续区间,肯定超时,但是每个连续区间都有一个特点就是它的最大值和最小值的差一定等于区间长度-1比如样例序列 3 2 4 1 其中3 2 4为一个连续区间4 - 2 = 2 = 3 - 1,所以枚举终点的过程中顺便求出区间最大与最小值,若max - min = end - start,自然是连续区间 ans+1.


代码:

#include<bits/stdc++.h>

using namespace std;

const int maxn = 50005;
int n, ans;
int a[maxn];

int main()
{
int start, end;
ans = 0;
scanf("%d", &n);
for(int i = 0;i < n;i++)
{
scanf("%d", &a[i]);
}
for(start = 0;start < n;start++)
{
int s = maxn, e = 0;
for(end = start;end < n;end++)
{
s = min(s, a[end]);
e = max(e, a[end]);
if(e - s == end - start)
{
ans++;
}
}
}
printf("%d\n", ans);
return 0;



展开阅读全文

蓝桥杯大赛编程大题——连号间数

05-05

rn标题:连号区间数rnrn 小明这些天一直在思考这样一个奇怪而有趣的问题:rnrn 在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:rnrn 如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。rnrn 当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。rnrn输入格式:rn第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。rn第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。rnrn输出格式:rn输出一个整数,表示不同连号区间的数目。rnrn示例:rn用户输入:rn4rn3 2 4 1rnrn程序应输出:rn7rnrn用户输入:rn5rn3 4 2 5 1rnrn程序应输出:rn9rnrn解释:rn第一个用例中,有7个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [2,2], [3,3], [4,4]rn第二个用例中,有9个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [1,5], [2,2], [3,3], [4,4], [5,5]rnrnrn资源约定:rn峰值内存消耗(含虚拟机) < 64MrnCPU消耗 < 5000msrnrnrn请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。rnrn所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。rn注意:不要使用package语句。不要使用jdk1.6及以上版本的特性。rn注意:主类的名字必须是:Main,否则按无效代码处理。rnrn 论坛

没有更多推荐了,返回首页