【MXNet学习12】学习率的设定

本文详细介绍了MXNet中学习率的设定方法,包括静态常数学习率和动态设置,如LRScheduler的基类及FactorScheduler、MultiFactorScheduler、PolyScheduler和CosineScheduler等动态调度器的工作原理和应用场景。此外,还讨论了如何单独设置网络中每层的学习率。
摘要由CSDN通过智能技术生成

1、学习率

目前深度学习使用的都是非常简单的一阶收敛算法,梯度下降法,不管有多少自适应的优化算法,本质上都是对梯度下降法的各种变形,所以,初始学习率对深层网络的收敛起着决定性的作用,下面就是梯度下降法的公式:
在这里插入图片描述
α \alpha α 就是学习率,如果学习率太小,会导致网络loss下降非常慢,如果学习率太大,那么参数更新的幅度就非常大,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还能坚持

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值