深度学习分享9:激活函数

sigmoid函数

tf.nn.sigmoid(x)
f(x)=1/(1+exp(-x))
特点:容易造成梯度消失,输出非0均值,收敛慢,幂运算复杂,训练时间长
深层神经网络一般不再使用sigmoid函数,因为它的导数处于0到0.25的区间,而深层神经网络的链式法则会导致多个这样的导数值相乘,从而出现一个极小的梯度,这就是梯度消失,使得参数无法继续更新

tanh函数

f(x)=[1-exp(-2x)]/[1+exp(-2x)]
特点:输出是0均值,容易造成梯度消失,幂运算复杂,训练时间长

relu函数

几乎是最常用的激活函数
在这里插入图片描述
优点:解决了正区间梯度消失问题,只需判断输入是否大于
0,计算速度快,收敛速度远快于sigmoid和tanh
缺点:输出非0均值,收敛慢,神经元死亡问题,有些神经元可能永远不会被激活,导致相应的参数无法被更新

leaky relu函数
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值