深度学习分享5:Iris鸢尾花分类问题

第五章

代码

我现在数据可视化的能力还挺弱,所以很多图没画,以后再补吧

import tensorflow as tf
import pandas as pd
from sklearn import datasets
import numpy as np
x_train=datasets.load_iris().data#数据
y_train=datasets.load_iris().target#标签
np.random.seed(116)#同步随机种子
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)

调包,导入数据,没什么好说的

model=tf.keras.models.Sequential([
    tf.keras.layers.Dense(3,activation='softmax',kernel_regularizer=tf.keras.regularizers.l2())
])
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
             loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
             metrics=['sparse_categorical_accuracy'])

选择模型:全连接层模型,3层,也不需要tf.keras.layers.Flatten()了,因为数据本来就是列向量,如果数据是图片的话需要这一步。激活函数选择softmax用于多分类,规范化选择l2型规范化,规范化这个问题后面讲。
优化算法:l1,l2规范化,弃权,改变激活函数,改变学习率,人为拓展训练数据,权重初始化,改变损失函数,如MSE,交叉熵,柔性最大值,可以自己根据实际情况设计,比如过拟合反演可以用微积分推导出交叉熵函数,这些不是凭空得来的,优化算法有很多内容,以后分析。
选择方法:随机梯度下降法,学习率为0.1,损失函数选择稀疏类别交叉熵,因为选择了softmax函数,使得输出是概率分布而不是原始输出,所以from_logits是False,由于鸢尾花数据集的标签是0 1 2,是数值,神经网络前向传播的输出是概率分布,所以选择sparse_categorical_accuracy作为评测指标。

model.fit(x_train,y_train,batch_size=32,epochs=500,validation_split=0.2,validation_freq=20)
model.summary()
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试
应支付0元
点击重新获取
扫码支付

支付成功即可阅读