八大排序算法之直接插入排序和希尔排序

插入排序

有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,但要求插入后此数据序列仍然有序,这个时候就要用到一种新的排序方法——插入排序法,插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
插入排序的基本思想是:每步将一个待排序的纪录,按其关键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止。

直接插入排序

直接插入排序是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
时间复杂度:O(n^2);

算法描述:
1.从第一个元素开始,该元素可以认为已经被排序
2.取出下一个元素,在已经排序的元素序列中从后向前扫描
3.如果该元素(已排序)大于新元素,将该元素移到下一位置
4.重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
5.将新元素插入到该位置后
6.重复步骤2~5

下面我用一张图简单描述一下

首先,将第一个数当做已经排好序的数组,然后从第二个数开始,与前面已经排好序的数进行比较,找到合适的位置插入进去。也就是先将4当做有序,然后将3拿出来和4进行比较,如果比4大就不动,如果比4小就将其放到4前面。3比4小,所以3放到4前面。之后再比较1,1和前面已经排好序的3,4进行比较,找到比后一个数小却比前一个数大的那个位置,然后就在那个位置插入,我们第三次就可以看到2就是这样插入的。当然,我们需要动的有一个地方就是往后偏移,毕竟每一次你往前插入,后面的数都需要往后挪一下。

下面贴上代码:
void InsertSort(int* a, size_t n)
{
	assert(a);
	for (size_t i = 1; i < n; ++i)
	{
		int end = i - 1;//用end标记这个数,作为有序数组的末尾
		int tmp = a[i];
		while (end >= 0)
		{
			if (a[end] > tmp)
			{
				a[end + 1] = a[end];
				end--;
			}
			else
			{
				break;
			}
		}
		a[end + 1] = tmp;
	}
}

希尔排序

希尔排序(Shell Sort)也是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:
①插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率。
②但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位。

希尔排序的 基本思想是:
把记录按步长 gap 分组,对每组记录采用直接插入排序方法进行排序。
随着步长逐渐减小,所分成的组包含的记录越来越多,当步长的值减小到 1 时,整个数据合成为一组,构成一组有序记录,则完成排序。

下面还是通过图来解释一下

在上面这幅图中:
初始时,有一个大小为 10 的无序序列。
在第一趟排序中,我们不妨设 gap1 = N / 2 = 5,即相隔距离为 5 的元素组成一组,可以分为 5 组。
接下来,按照直接插入排序的方法对每个组进行排序。
在第二趟排序中,我们把上次的 gap 缩小一半,即 gap2 = gap1 / 2 = 2 (取整数)。这样每相隔距离为 2 的元素组成一组,可以分为 2 组。
按照直接插入排序的方法对每个组进行排序。
在第三趟排序中,再次把 gap 缩小一半,即gap3 = gap2 / 2 = 1。 这样相隔距离为 1 的元素组成一组,即只有一组。
按照直接插入排序的方法对每个组进行排序。此时,排序已经结束。
需要注意一下的是,图中有两个相等数值的元素 5 和 5 。我们可以清楚的看到,在排序过程中,两个元素位置交换了。
所以,希尔排序是不稳定的算法。

下面给出代码
void ShellSort(int* a, size_t n)
{
	assert(a);
	int gap = n;
	while (gap > 1)
	{
		gap = gap / 3 + 1;
		for (size_t i = gap; i < n; ++i)
		{
			int tmp = a[i];
			int end = i - gap;
			while (end >= 0)
			{
				if (a[end] > tmp)
				{
					a[end + gap] = a[end];
					end -= gap;
				}
				else
				{
					break;
				}
			}
			a[end + gap] = tmp;
		}
	}
}
这里的代码呢我就没有按照上面图中说的那样每一次都除以2,而是使用除以3再加1的方法。主要是这样的序列好像更加高效。ps:虽然我没有去测试过,只是去查了一下(*^__^*) 。













评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值