2021考研数学2线形代数

2021年考研数二线性代数

一 选择题 (每小题5分)

  1. 二次型 f ( x 1 , x 2 , x 3 ) = ( x 1 + x 2 ) 2 + ( x 2 + x 3 ) 2 − ( x 3 − x 1 ) 2 f(x_1, x_2, x_3)=(x_1+x_2)^2 + (x_2+x_3)^2-(x_3-x_1)^2 f(x1,x2,x3)=(x1+x2)2+(x2+x3)2(x3x1)2的正惯性指数与负惯性指数依次为

    A) 2, 0. B) 1,1. C) 2,1. D) 1,2.

  2. 设三阶矩阵 A = ( α 1 , α 2 , α 3 ) A=(\alpha_1, \alpha_2,\alpha_3) A=(α1,α2,α3), B = ( β 1 , β 2 , β 3 ) B=(\beta_1, \beta_2, \beta_3) B=(β1,β2,β3), 若向量组 α 1 , α 2 , α 3 \alpha_1, \alpha_2, \alpha_3 α1,α2,α3可以由 β 1 , β 2 \beta_1, \beta_2 β1,β2线性表出, 则

    A) Ax=0的解均为Bx=0的解

    B) A T x = 0 A^Tx=0 ATx=0的解均为 B T x = 0 B^Tx=0 BTx=0的解.

    C) Bx=0的解均为Ax=0的解.

    D) B T x = 0 B^Tx=0 BTx=0的解均为 A T x = 0 A^Tx=0 ATx=0的解.

  3. 已知矩阵 A = ( 1 0 − 1 2 − 1 1 − 1 2 − 5 ) A=\begin{pmatrix} 1 & 0 &-1 \\ 2 & -1 & 1\\ -1 & 2 & -5 \end{pmatrix} A=121012115若下三角可逆矩阵P和上三角可逆矩阵Q, 使PAQ为对焦矩阵, 则P, Q可以分别取

    A) ( 1 0 0 0 1 0 0 0 1 ) \begin{pmatrix}1&0&0\\ 0&1&0\\0&0&1 \end{pmatrix} 100010001, ( 1 0 1 0 1 3 0 0 1 ) \begin{pmatrix} 1 & 0&1\\ 0& 1&3\\0&0&1\end{pmatrix} 100010131. B) ( 1 0 0 2 − 1 0 − 3 2 1 ) \begin{pmatrix}1&0&0\\ 2& -1& 0\\ -3&2&1 \end{pmatrix} 123012001, ( 1 0 0 0 1 0 0 0 1 ) \begin{pmatrix} 1&0&0\\ 0&1&0\\0&0&1\end{pmatrix} 100010001.

    C) ( 1 0 0 2 − 1 0 − 3 2 1 ) \begin{pmatrix} 1&0&0\\2&-1&0\\-3&2&1\end{pmatrix} 123012001, ( 1 0 1 0 1 3 0 0 1 ) \begin{pmatrix}1&0&1\\0&1&3\\0&0&1 \end{pmatrix} 100010131. D) ( 1 0 0 0 1 0 1 3 1 ) \begin{pmatrix} 1&0&0\\0&1&0\\ 1&3&1\end{pmatrix} 101013001, ( 1 2 − 3 0 − 1 2 0 0 1 ) \begin{pmatrix} 1&2 &-3\\0&-1&2\\0&0&1\end{pmatrix} 100210321.

二 填空题

  1. 多项式 f ( x ) = ∣ x x 1 2 x 1 x 2 − 1 2 1 x 1 2 − 1 1 x ∣ f(x)=\begin{vmatrix}x&x&1&2x\\1&x&2&-1\\2&1&x&1\\2&-1&1&x \end{vmatrix} f(x)=x122xx1112x12x11x x 3 x^3 x3项的系数为___________________________.(6分)

三 解答题

  1. 设矩阵 A = ( 2 1 0 1 2 0 1 a b ) A=\begin{pmatrix}2&1&0\\1&2&0\\1&a&b \end{pmatrix} A=21112a00b仅有两个不同的特征值. 若A相似于对角矩阵, 求 a , b a, b a,b的值, 并求可逆矩阵P, 使得 P − 1 A P P^{-1}AP P1AP为对角矩阵.(12分)

解析: 本题主要考察考生对一般矩阵相似对角化的理论的掌握.所涉及知识点包括:

  • 特征值和特征向量(基础知识)

  • 一般矩阵相似对角化理论: 如果一个矩阵所有特征值互异, 则一定可以相似对角化; 当一个矩阵存在k重特征值时, 只要k重特征值对应k个线形无关的特征向量, 那么该矩阵依然可以相似对角化.

解答:

∣ 2 − λ 1 0 1 2 − λ 0 1 a b − λ ∣ \begin{vmatrix} 2-\lambda&1&0\\ 1& 2-\lambda&0\\1&a&b-\lambda\end{vmatrix} 2λ1112λa00bλ= ( b − λ ) ( λ − 1 ) ( λ − 3 ) (b-\lambda)(\lambda-1)(\lambda-3) (bλ)(λ1)(λ3)

因为矩阵A仅有两个不同的特征值, 所以当1为重特征值时, λ 1 = λ 2 = 1 , λ 3 = 3 \lambda_1=\lambda_2=1, \lambda_3=3 λ1=λ2=1,λ3=3, 则b=1. 此时

( A − E ) = ( 1 1 0 1 1 0 1 a 1 ) → ( 1 1 0 1 a 1 0 0 0 ) (A-E)=\begin{pmatrix}1&1&0\\1&1&0\\1&a&1 \end{pmatrix}\rightarrow\begin{pmatrix}1&1&0\\1&a&1\\0&0&0 \end{pmatrix} (AE)=11111a0011101a0010 → ( 1 1 0 0 a − 1 1 0 0 0 ) \rightarrow \begin{pmatrix}1&1&0\\ 0&a-1&1\\0&0&0\end{pmatrix} 1001a10010

则r(A-E)=2, 这就意味着矩阵A的二重特征值为1时, 只能由一个线形无关的特征向量, 矩阵A不能相似于对角阵. 与已知矛盾.

那么可以选择 λ 1 = 1 , λ 2 = λ 3 = 3 \lambda_1=1, \lambda_2=\lambda_3=3 λ1=1,λ2=λ3=3, 则b=3. 此时

( A − 3 E ) = ( − 1 1 0 1 − 1 0 1 a 0 ) (A-3E)=\begin{pmatrix}-1&1&0\\1&-1&0\\1&a&0\end{pmatrix} (A3E)=11111a000 → ( 1 − 1 0 1 a 0 0 0 0 ) \rightarrow \begin{pmatrix} 1&-1&0\\ 1&a&0\\0&0&0\end{pmatrix} 1101a0000 → ( 1 − 1 0 0 a + 1 0 0 0 0 ) \rightarrow \begin{pmatrix} 1&-1&0\\ 0&a+1&0\\0&0&0\end{pmatrix} 1001a+10000

则当 r ( A − 3 E ) = 1 r(A-3E)=1 r(A3E)=1时, 二重特征值3就对应两个线形无关的特征向量, 此时 a = − 1 a=-1 a=1.

因此就可以得到: a = − 1 , b = 3 a=-1, b=3 a=1,b=3 . 此时矩阵 A = ( 2 1 0 1 2 0 1 − 1 3 ) A=\begin{pmatrix}2&1&0\\1&2&0\\1&-1&3\end{pmatrix} A=211121003

λ 1 = 1 \lambda_1=1 λ1=1时, 求得其对应的特征向量为 ζ 1 = ( − 1 , 1 , 1 ) T \zeta_1=(-1, 1, 1)^T ζ1=(1,1,1)T

λ 2 = λ 3 = 3 \lambda_2=\lambda_3=3 λ2=λ3=3时, 求得其对应的线形无关的特征向量为 ζ 2 = ( 1 , 1 , 0 ) T , ζ 3 = ( 0 , 0 , 1 ) T \zeta_2=(1,1,0)^T, \zeta_3=(0,0,1)^T ζ2=(1,1,0)T,ζ3=(0,0,1)T

P = ( ζ 1 , ζ 2 , ζ 3 ) = ( − 1 1 0 1 1 0 1 0 1 ) P=(\zeta_1, \zeta_2, \zeta_3)=\begin{pmatrix} -1&1&0\\1&1&0\\1&0&1\end{pmatrix} P=(ζ1,ζ2,ζ3)=111110001则有 P − 1 A P = ( 1 3 3 ) P^{-1}AP=\begin{pmatrix} 1&&\\&3&\\&&3\end{pmatrix} P1AP=133为对角阵.

说明:

  1. 试题转自中国考研网.
  2. 转载的目的为了教学使用.
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值