SparkStreaming数据源Flume

本文介绍了使用Kafka作为消息中间件的数据处理架构。通过自定义规则将数据发送到Kafka,确保数据能够被完全处理,并增加了处理完成的标记。同时,文章还探讨了不同的数据落地方案,包括MySQL、Redis、HBase等,并提到了一些监控工具如Spark Streaming和Ganglia。
摘要由CSDN通过智能技术生成

架构:

 

 

为什么放进kakfa

 Habasehdfshadoopstreaming都可以直接消费。

 

自定义规则创建分区,放进kafka

 

Kafka的数据处理完毕增加标签,保证数据全被处理。

 

监控数据工具?

Sparkstreaming 360度交互式可视化。

Ganlia

 

数据落地?

Mysql:数据量小

Redis:数据一般

Habse:数据最大

Memsql,比mysql速度快20

Es

Memcatched

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值