神经网络优化

神经网络优化

神经元模型:用数学公式表示为: f ( ∑ i x i w i + b ) f(\sum_{i}x_{i}w_{i}+b) f(ixiwi+b),f为激活函数。
激活函数:引入非线性激活因素,提高模型的表达力
常用的激活函数有relu、sigmoid、tanh等

  • 激活函数relu:在TensorFlow中,用tf.nn.relu()表示。
    f ( x ) = m a x ( x , 0 ) = { 0 , x&lt;=0 x , x&gt;=0 f(x)=max(x,0)\\ =\begin{cases} 0, &amp; \text{x&lt;=0} \\ x, &amp; \text{x&gt;=0} \end{cases} f(x)=max(x,0)={0,x,x<=0x>=0
  • 激活函数sigmoid:在TensorFlow中,用tf.nn.sigmoid()表示。 f ( x ) = 1 1 + e − x f(x)=\frac{1}{1+e^{-x}} f(x)=1+ex1
    在这里插入图片描述
  • 激活函数tanh:在TensorFlow中,用tf.nn.tanh()表示。
    f ( x ) = 1 − e − 2 x 1 + e − 2 x f(x)=\frac{1-e^{-2x}}{1+e^{-2x}} f(x)=1+e2x1e2x
    在这里插入图片描述

神经网络复杂度:可用神经网络层数和待优化参数表示。
神经网络层数:层数=n个隐藏层+1个输出层
神经网络待优化参数:所有参数w的个数+所有参数b的个数

损失函数(loss):用来表示预测值(y)与已知答案(y_)的差距。在训练神经网络时,通过不断改变神经网络中所有参数,使损失函数不断减小,从而训练出更高准确率的神经网络模型。常用的损失函数有均方误差、自定义和交叉熵等。
均方误差:n个样本的预测值与已知答案y_之差的平方和,再求平均值。
M S E ( y _ , y ) = ∑ i = 1 n ( y − y _ ) 2 n MSE(y_{\_},y)=\frac{\sum_{i=1}^{n}{(y-y_{\_})^2}}{n} MSE(y_,y)=ni=1n(yy_)2
在TensorFlow中表示为

loss_mse=tf.reduce_mean(tf.square(y-y_))

交叉熵(cross entropy):表示两个概率分布之间的距离。交叉熵越大,两个概率分布距离越远,两个概率分布越相异;交叉熵越小,两个概率分布距离越近,两个概率分布越相似。
计算公式: H ( y _ , y ) = − ∑ y _ × log ⁡ y H(y_{\_},y)=-\sum{y_{\_}\times\log{y}} H(y_,y)=y_×logy
在TensorFlow中表示为

ce=-tf.reduce_mean(y*tf.log(tf.clip_by_value(y,1e-12,1.0)))

例如:用两个神经网络解决二分类问题,已知标准答案为y_=(1,0),第一个神经网络预测结果y1=(0.6,0.4),第二个神经网络预测结果为y2=(0.8,0.2),判断哪一个神经网络预测结构更接近标准答案(直观上可以看出第二个预测结果更加正确)
根据交叉熵计算公式得:
H 1 ( ( 1 , 0 ) , ( 0.6 , 0.4 ) ) = − ( 1 × log ⁡ 0.6 + 0 × log ⁡ 0.4 ) ≈ 0.222 H_1((1,0),(0.6,0.4))=-(1\times\log0.6+0\times\log0.4)\approx0.222 H1((1,0),(0.6,0.4))=(1×log0.6+0×log0.4)0.222 H 2 ( ( 1 , 0 ) , ( 0.8 , 0.2 ) ) = − ( 1 × log ⁡ 0.8 + 0 × log ⁡ 0.2 ) ≈ 0.097 H_2((1,0),(0.8,0.2))=-(1\times\log0.8+0\times\log0.2)\approx0.097 H2((1,0),(0.8,0.2))=(1×log0.8+0×log0.2)0.097由于0.222>0.0097,所以预测结果2与标准答案更接近,y2预测更准确。
softmax函数:将n分类的n个输出(y1,y2…yn)变为满足以下概率分布的函数。
∀ x ∈ ( y 1 , y 2 . . . y n ) P ( X = x ) ∈ [ 0 , 1 ] 且 ∑ P ( X = x ) = 1 \forall{x}\in(y_1,y_2...y_n)\quad P(X=x)\in[0,1]且\sum{P(X=x)=1} x(y1,y2...yn)P(X=x)[0,1]P(X=x)=1softmax函数数学意义: s o f t m a x ( y i ) = e y i ∑ j = 1 n e y j softmax(y_i)=\frac{e^{y_i}}{\sum_{j=1}^{n}{e^{y_j}}} softmax(yi)=j=1neyjeyi
在TensorFlow中,一般让模型的输出经过softmax函数,以获得输出分类的概率分布,再与标准答案对比,求出交叉熵,得到损失函数,用如下函数实现。

ce=tf.nn.square_softmax_cross_entropy_with_logits(logits=y,labels=tf.agrmax(y_,1))
cem=tf.reduce_mean(ce)

学习率learning_rate:表示了每次参数更新的幅度大小。学习率过大,会导致待优化参数在最小值附近波动,不收敛;学习率过小,会导致待优化参数收敛缓慢。在训练过程中,参数更新向着损失函数梯度下降的方向。
指数衰减学习率: 学习率随着训练轮数变化而动态更新。
l e a r n i n g _ r a t e = L E A R N I N G _ R A T E _ B A S E ∗ L E A R N I N G _ R A T E _ D E C A Y ∗ g l o b a l _ s t e p L E A R N I N G _ R A T E _ B A T C H _ S I Z E learning_{\_}rate=LEARNING_{\_}RATE_{\_}BASE*LEARNING_{\_}RATE_{\_}DECAY*\frac{global_{\_}step}{LEARNING_{\_}RATE_{\_}BATCH_{\_}SIZE} learning_rate=LEARNING_RATE_BASELEARNING_RATE_DECAYLEARNING_RATE_BATCH_SIZEglobal_step在TensorFlow中表示为:

global_step=tf.Variable(0,trainable=False)
learning_rate=tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,
	LEARNING_RATE_STEP,LEARNING_RATE_DECAY,staircase=True/False)

其中,LEARNING_RATE_BASE为学习率初始值,LEARNING_RATE_DECAY为学习率衰减率,global_step记录当前训练轮数,为不可训练参数。学习率learning_rate更新频率为输入数据集总样本数除以每次喂入样本。若staircase设置为True时,表示global_step/learning_rate_step为整数,学习率阶梯型衰减;若设置staircase为false时,学习率会是一条平滑下降的曲线。
例如:
学习率初值设为0.1,学习率衰减率设置为0.99,BATCH_SIZE设置为1。

#coding:utf-8
#设损失函数 loss=(w+1)^2,设w初值为10
import tensorflow as tf
LEARNING_RATE_BASE=0.1		#最初学习率
LEARNING_RATE_DECAY=0.99	#学习率衰减率
LEARNING_RATE_STEP=1			#喂入多少轮BATCH_SIZE后,更新一次学习率,一般设为:总样本率/BATCH_SIZE

#运行轮数计数器,设为不可被训练
global_step=tf.Variable(0,trainable=False)
learning_rate=tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,LEARNING_RATE_STEP,LEARNING_RATE_DECAY,staircase=True)
#定义待优化参数,初值给10
w=tf.Variable(tf.constant(10,dtype=tf.float32))
loss=tf.square(w+1)
#定义反向传播方法
train_step=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=global_step)

#生成会话,训练40轮
with tf.Session() as sess:
	init_op=tf.global_variables_initializer()
	sess.run(init_op)
	for i in range(40):
		sess.run(train_step)
		learning_rate_val=sess.run(learning_rate)
		global_step_val=sess.run(global_step)
		w_val=sess.run(w_val)
		loss_val=sess.run(loss)
		print("After %s steps: global step is %f, w is %f, learning rate is %f, loss is %f"%(i,global_step_val,w_val,learning_rate_val,loss_val))

部分运行结果如下:

After 35 steps: global step is 36.000000, w is -0.985877, learning rate is 0.069641, loss is 0.000199
After 36 steps: global step is 37.000000, w is -0.987844, learning rate is 0.068945, loss is 0.000148
After 37 steps: global step is 38.000000, w is -0.989520, learning rate is 0.068255, loss is 0.000110
After 38 steps: global step is 39.000000, w is -0.990951, learning rate is 0.067573, loss is 0.000082
After 39 steps: global step is 40.000000, w is -0.992174, learning rate is 0.066897, loss is 0.000061

滑动平均:记录了一段时间内模型中所有参数w和b的平均值。利用滑动平均可以增强模型的泛化能力。
滑动平均计算公式
滑动平均值(影子)=衰减率 × \times ×影子+(1-衰减率) × \times ×参数
其中,衰减率=min{MOVING_AVERAGE_DECAY, 1 + 轮 数 10 + 轮 数 \frac{1+轮数}{10+轮数} 10+1+},影子初值等于参数初值
在TensorFlow中表示为

ema=tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step)

其中,MOVING_AVERAGE_DECAY表示滑动平均衰减率,一般会赋接近1的值,global_step为当前训练轮数。

ema_op=ema.apply(tf.trainable_variables())

其中,ema.apply()函数对括号内参数求滑动平均,tf.trainable_variables()函数实现把所有待训练参数汇总为列表。

with tf.control_dependencies([train_op,ema_op]):
	train_op=tf.no_op(name='train')

该函数实现将滑动平均与训练过程同步运行。查看模型中参数的滑动平均值,可以用ema.average()函数。
示例代码:

#coding:utf-8
import tensorflow as tf
#定义初始值为0的待优化参数w1,这个例子的目的就是不断更新w1参数,优化w1参数,并求w1的滑动平均值
w1=tf.Variable(0,dtype=tf.float32)
global_step=tf.Variable(0,trainable=False)
MOVING_AVERAGE_DECAY=0.99
#实例化滑动平均对象,衰减率为0.99,当前训练轮数为global_step
ema=tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step)
ema_op=ema.apply(tf.trainable_variables())

#查看迭代过程中变量取值的变化
with tf.Session() as sess:
	init_op=tf.global_variables_initializer()
	sess.run(init_op)
	#输出当前参数w1和滑动平均值
	print(sess.run([w1,ema.average(w1)]))
	
	#参数w1赋为1
	sess.run(tf.assign(w1,1))
	sess.run(ema_op)
	print(sess.run([w1,ema.average(w1)]))

	#更新step和w1的值,模拟出100轮迭代后,参数w1变为10
	sess.run(tf.assign(global_step,100)
	sess.run(tf.assign(w1,10))
	sess.run(ema_op)
	print(sess.run([w1,ema.average(w1)]))
	sess.run(ema_op)
	print(sess.run([w1,ema.average(w1)]))
	sess.run(ema_op)
	print(sess.run([w1,ema.average(w1)]))
	sess.run(ema_op)
	print(sess.run([w1,ema.average(w1)]))
	sess.run(ema_op)
	print(sess.run([w1,ema.average(w1)]))
	sess.run(ema_op)
	print(sess.run([w1,ema.average(w1)]))

运行结果是:

[0.0, 0.0]
[1.0, 0.89999998]
[10.0, 1.6445453]
[10.0, 2.3281732]
[10.0, 2.955868]
[10.0, 3.5322061]
[10.0, 4.061389]
[10.0, 4.5472751]

可见,滑动平均追随参数变化而变化。

过拟合:神经网络模型在训练数据集上的准确率较高,在新的数据进行预测或分类时准确率较低,说明模型泛化能力差。
正则化:在损失函数中给每个w加上权重,引入模型复杂度指标,从而抑制模型噪声,减小过拟合。
使用正则化后,损失函数loss变为两项之和:
l o s s = l o s s ( y 与 y _ ) + R E G U L A R I Z E R ∗ l o s s ( w ) loss=loss(y与y_{\_})+REGULARIZER*loss(w) loss=loss(yy_)+REGULARIZERloss(w)其中第一项是预测结果与标准答案之间的差距,如之前讲过的交叉熵、均方误差等;第二项是正则化计算结果。
正则化计算方法

  • L1正则化:
    l o s s L 1 = ∑ i ∣ w i ∣ loss_{L1}=\sum_{i}|w_i| lossL1=iwi在TensorFlow中表示为:
loss(w)=tf.contrib.layers.l1_regularizer(REGULARIZER)(w)
  • L2正则化:
    l o s s L 2 = ∑ i ∣ w ∣ 2 loss_{L2}=\sum_{i}|w|^2 lossL2=iw2在TensorFlow中表示为:
loss(w)=tf.contrib.layers.l2_regularizer(REGULARIZER)(w)

用TensorFlow函数实现正则化:

tf.add_to_collection("losses",tf.contrib.layers.l2_regularizer(REGULARIZER)(w))
loss=cem+tf.add_n(tf.get_collection('losses'))

例如:
用300个符合正态分布的点X[x0,x1]作为数据集,并生成标签集Y_,将数据集标注为红色和蓝色。

# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

BATCH_SIZE=30
seed=2
rdm=np.random.RandomState(seed)
X=rdm.randn(300,2)
Y_=[int(x0*x0+x1*x1<2) for (x0,x1) in X]
Y_c=[['red' if y else 'blue'] for y in Y_]
X=np.vstack(X).reshape(-1,2)
Y_=np.vstack(Y_).reshape(-1,1)

plt.scatter(X[:,0],X[:,1],c=np.squeeze(Y_c))
plt.show()

#定义神经网络的输入、参数和输出,定义前向传播过程
def get_weight(shape,regularizer):
    w=tf.Variable(tf.random_normal(shape),dtype=tf.float32)
    tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(regularizer)(w))
    return w

def get_bias(shape):
    b=tf.Variable(tf.constant(0.01,shape=shape))
    return b

x=tf.placeholder(tf.float32,shape=(None,2))
y_=tf.placeholder(tf.float32,shape=(None,1))

w1=get_weight([2,11],0.01)
b1=get_bias([11])
y1=tf.nn.relu(tf.matmul(x,w1)+b1)

w2=get_weight([11,1],0.01)
b2=get_bias([1])
y=tf.matmul(y1,w2)+b2

#定义损失函数
loss_mse=tf.reduce_mean(tf.square(y-y_))
loss_total=loss_mse+tf.add_n(tf.get_collection('losses'))

#定义反向传播方法
train_step=tf.train.AdamOptimizer(0.0001).minimize(loss_mse)

with tf.Session() as sess:
    init_op=tf.global_variables_initializer()
    sess.run(init_op)
    STEPS=40000 #训练40000轮
    for i in range(STEPS):
        start=(i*BATCH_SIZE)%300
        end=start+BATCH_SIZE
        sess.run(train_step,feed_dict={x:X[start:end],y_:Y_[start:end]})
        if i%2000 == 0:
            loss_mse_v=sess.run(loss_mse,feed_dict={x:X,y_:Y_})
            print("After %d steps, loss is:%f" % (i,loss_mse_v))
            
    #xx在-3到3之间以步长为0.01,yy在-3到3之间以步长为0.001,生成二维网格坐标点
    xx,yy=np.mgrid[-3:3:0.01,-3:3:0.01]
    grid=np.c_[xx.ravel(),yy.ravel()]
    #将网格坐标点喂入神经网络,probs为输出
    probs=sess.run(y,feed_dict={x:grid})
    #调整probs的形状
    probs=probs.reshape(xx.shape)
    print('w1:\n',sess.run(w1))
    print('b1:\n',sess.run(b1))
    print('w2:\n',sess.run(w2))
    print('b2:\n',sess.run(b2))
    
plt.scatter(X[:,0],X[:,1],c=np.squeeze(Y_c))
plt.contour(xx,yy,probs,levels=[0.5])
plt.show()

#定义反向传播方法,包含正则化
train_step=tf.train.AdamOptimizer(0.0001).minimize(loss_total)

with tf.Session() as sess:
    init_op=tf.global_variables_initializer()
    sess.run(init_op)
    STEPS=40000
    for i in range(STEPS):
        start=(i*BATCH_SIZE)%300
        end=start+BATCH_SIZE
        sess.run(train_step,feed_dict={x:X[start:end],y_:Y_[start:end]})
        if i%2000==0:
            loss_v=sess.run(loss_total,feed_dict={x:X,y_:Y_})
            print("after %d steps, loss is %f" % (i,loss_v))
        
    xx,yy=np.mgrid[-3:3:0.01,-3:3:0.01]
    grid=np.c_[xx.ravel(),yy.ravel()]
    probs=sess.run(y,feed_dict={x:grid})
    probs=probs.reshape(xx.shape)
    print("w1:\n",sess.run(w1))
    print("b1:\n",sess.run(b1))
    print("w2:\n",sess.run(w2))
    print("b2:\n",sess.run(b2))

plt.scatter(X[:,0],X[:,1],c=np.squeeze(Y_c))
plt.contour(xx,yy,probs,levels=[0.5])
plt.show()

运行代码,效果如下:
首先,将数据实现可视化, x 0 2 + x 1 2 &lt; 2 x_0^2+x_1^2&lt;2 x02+x12<2的点显示红色, x 0 2 + x 1 2 &gt; 2 x_0^2+x_1^2&gt;2 x02+x12>2的点显示为蓝色,如图所示:

接着执行无正则化的训练过程,输出生成曲线:
在这里插入图片描述
最后,执行正则化的训练过程,输出生成曲线:
在这里插入图片描述
对比无正则化的生成曲线和正则化的生成曲线,可以看出正则化的拟合曲线更为平滑,模型具有更好的泛化能力。

总结

本文主要介绍了如何优化神经网络模型。主要优化方法有:

  • 不同激活函数,优化神经元模型
  • 不同损失函数,例如均方误差、交叉熵或自定义损失函数
  • 指数衰减学习率
  • 滑动平均
  • 正则化

中国大学mooc《人工智能实践:Tensorflow笔记》

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值