gcd

有序列表

1. LCM(a, b) = a / GCD(a, b) × b;//先除后乘 防止数字过大爆炸

2. 欧几里得cpp

void gcd(int  a,int  b)
{
    return b==0?a:gcd(b,a%b);
}

3. 扩展欧几里得

void exgcd(LL a, LL b, LL &x, LL &y, LL &d){
    if (!b) {d = a, x = 1, y = 0;}
    else{
        exgcd(b, a % b, y, x, d);
        y -= x * (a / b);
    }
}

4. 线性模方程的解

 void mod_line(int a, int b, int n)
    {    
    //ax = b (mod n)
        int d, x, y, x0, i;
        exgcd(a, n, x, y,d);
        if(b%d == 0)
        {
            x0 = x * (b/d) % n + n;//x0为任意一个解
            for(i = 0;i < d;i ++)
               cout << (x0 + i*n/d) % n <<endl;//方程有d个解
        }
     }

一些结论(一下解都是基于整数):

若:ax = b mod n;
转化后 ax-kn=b;
设: d=gcd(a,n) d = g c d ( a , n )
上述方程的整数解可写成:
设一个解为 (x0,y0) ( x 0 , y 0 )
x=x0+in/dy=y0+ia/d x = x 0 + i ∗ n / d , y = y 0 + i ∗ a / d

1.求任意解

设: s=bd s = b d
则任意解为: (x0s ( x 0 ∗ s mod n+n) n + n ) mod n n

2.求通解

首先,明确一点通解共有d个
求通解前要先求得一个任意解:设:x0=(x0s mod n+n) n + n ) mod n n
则通解为:(x0+in/d) mod n 0 0 ≤i<d

3.求最小正整数解

设: m=nd m = n d
同样要先求一个任意解 x0 x 0
则最小正整数解为: x0=(x0s x 0 = ( x 0 ∗ s mod m+m) m + m ) mod m m <script type="math/tex" id="MathJax-Element-1297">m</script>

解释一下,因为每个解都是以n/d间隔递增求模的,那么显然正解在(0,n/d)之间,所以mod n/d
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值