yalmip决策变量

本文详细介绍了YALMIP中创建不同类型的决策变量的方法,包括使用`sdpvar`、`intbar`和`binvar`函数创建实数、整数和0/1型决策变量。此外,还展示了如何定义对称、全参数矩阵以及复数矩阵,并提供了创建对角变量和汉克矩阵的示例。最后,文章提到了如何利用循环和维度赋值来创建多个相同变量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

yalmip一共有三种方式创建决策变量,分别为:

sdpvar-创建实数型决策变量

intbar-创建整数型决策变量

binvar-创建0/1型决策变量

sdpvar:定义象征变量。

语法:

x=sdpvar(n)

x=sdpvar(n,m)

x=sdpvar(n,m,'type')

x=sdpvar(n,m,'type','field')

x=sdpvar(dim1,dim2,dim3,...,dimn,'type','field')

sdpvar x

例子:

定义正方形的实数对阵矩阵如下:

P=sdpvar(n,n)% SYMMETRIC!

若是需要定义一个对阵矩阵或是标量,上面的命令也可以通过一个参数进行简化定义:

P=sdpvar(n)% SYMMETRIC!

通过使用详细的注释也可定义同样的矩阵:

P=sdpvar(n,n,'symmetric')

定义全参数矩阵(非必须对阵)需要给定第三个参数:

P=sdpvar(n,n,'full')

定义一个正方形复数全参数矩阵:

P=sdpvar(n,n,'full','complex')

第三个和第四个参数可以简化为如下形式:

P=sdpvar(n,n,'sy','co')

很多用户在一开始很简单的事情上,比如定义一个对角变量,遇到困难。请记住在使用yalmip时几乎所有matlab操作符都适用于sdpvar对象。今后,用如下命令定义对角变量:

sdpvar x y z(1,1) u(2,2) v(2,3,'full','complex')

或是 汉克矩阵:

X=hankel(sdpvar(n,1));

特定情况下需要几个相同变量,通常的方式市使用循环语句实现:

fori=1:100;

X{i}=sdpvar(5,5);

end

更方便的方式是使用维度赋值了的向量(不会翻译:vector valued dimensions)

X=sdpvar(5*ones(1,100),5*ones(1,100));

定义一个3维变量,其中每一个面的2个维度都是对称的:

X=sdpvar(3,3,3)

X(:,:,1)

Linear matrix variable 3x3 (symmetric,real,6 variables)

定义一个4维变量,其中第一个2维的每个面都是全参数化。

X=sdpvar(3,3,3,3,'full')

X(:,:,1,1)

Linear matrix variable 3x3 (full,real,9 variables)



作者:keyliva
链接:https://www.jianshu.com/p/558cdfd4196f
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值