随着近期DeepSeek的爆火,越来越多的人开始关注AI大模型,网上各式各样的“使用教程”也让很多人走了不少弯路,本文我们来聊一聊DeepSeek的正确打开方式。
一、推理大模型
在以往使用AI大模型的时候,我们接触最多的就是不断通过“提示语”来优化模型,对着无聊的输入框,绞尽脑汁的思考可以通过哪些词语可以再优化一下,最终得到我们可以接受的结果。在这个过程中你一定会在某个瞬间觉得“AI好傻”。
这是传统的指令大模型(通用模型:如GPT-4)的操作方法,它需要根据你准确的指令来进行工作,所以“指令“的好坏就显得尤为重要了。举个例子:
-
帮我写一篇程序员为主角的短篇爽文,先给出时间、地点、场景的设定,然后给出章节摘要和写作重点,最后写出一篇爽文给我。
-
使用指令模型时,我们要提供所有我们想要实现的指令内容,否则大模型很可能会遗漏掉我们想要的东西。
再说说DeepSeek,首先对于传统的“指令”操作法,它是一定能够识别的,但是你会觉得不够“丝滑”,这时我们就要考虑到他的核心—”推理大模型“。简单的说就是它能够根据你的输入去思考该怎么做,你告诉他你的需求和场景即可。举个例子:
帮我写一篇程序员为主角的短篇爽文
-
-
使用推理模型时,我们给出需求和场景即可,大模型会以需求为出发点去推理我们想要的东西,最终返回详细的结果给我们(下文会展示DeepSeek的回答结果)
总结一下DeepSeek的打开方式:
- 具体需求
- 需求应用场景
- 注意事项
示例:
- 帮我XXX,用于XXXX,希望达到XXX的效果
- 我要XXX,给XXXX使用,担心XXX的问题
注:
- 推理大模型(如DeepSeek):不需要刻意优化提示词,不需要像指令模型一样给出详细步骤
- 指令大模型(如GPT-4):尽量给出详细的,结构化的引导语句
二、思考模式
深度思考模式
DeepSeek除了最常见的交互式对话模式之外还提供了深度思考模式,想要开启深度思考,我们需要在提问时勾选最下角的“深度思考(R1)”按钮。
在深度思考模式下,我们会看到DeepSeek对于我们的问题的详细思考过程,虽然耗时较长,但能让我们更好的理解“它”是怎么想的。举个例子:
三思而后行
有句古话说得好,我们要“三思而后行”,在让DeepSeek进行深度思考的时候,我们可以稍加引导,让它多思考几轮得到更好的结果。举个例子:
- 请考虑你的回答3轮后再给我答案。
像这样能够引导DeepSeek输出方式的提示语还有很多,接下来我们再说说常见的“提示语”。
三、“提示语”引导
介绍推理模型的时候,我们提到了“指令“同样会对推理大模型生效,这里我们聊一聊如何用提示语去引导DeepSeek。
再次强调一下,对于推理大模型DeepSeek:不需要刻意优化提示词,不需要像指令模型一样给出详细步骤。
简单的说:像一个老板给下属安排工作一样去输入就可以了!
举个例子:
初始输入:
- 写一篇程序员为主角的短篇爽文,男主名字就叫二师兄吧
更改鲁迅风格引导:
- 写一篇程序员为主角的短篇爽文,男主名字就叫二师兄吧,整个鲁迅风格
这里只给出一个简单的例子,后面会出文章专门讲解一下提示语的常见类型与使用方法。更多的提示语引导还是要根据自己的想法给出。
就像这样稍加引导就可以了,DeepSeek给出的内容还是比较有趣的,示例内容贴在下方,具体差距大家可以去官网实操一下:
四、DeepSeek功能亮点
- 联网搜索:可以结合搜索内容,提供最新的答案
- 创意能力:可以生成小说、散文、诗歌等多种类型的文学内容,也可以模仿鲁迅、刘润等人的写作风格
- 逻辑推理:逻辑推理能力强,适用于各类专业领域
- 强大的知识库:能对技术、科学等领域的问题给出精准答案
五、DeepSeek缺陷
-
长文本问题
DeepSeek目前的上下文长度限制为64K,很多工作场景下会不够用
-
代码问题
AI大模型作为程序员们的强力辅助工具,一直都有着生成后的代码报错,逻辑不严密等问题,这算是所有大模型的通病。
-
性能不稳定性
DeepSeek偶尔会出现输出不相关或不完整内容的情况,此时需要重置会话来解决问题,较为影响体验。
六、DeepSeek相关资料
- 官网(可以下载DeepSeek APP):https://www.deepseek.com/
- 论文原文:https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf