Jupyter中显示DataFrame的全部行和列

如果想要指定最大的行数和列数,代码如下:

pd.set_option('max_rows', 5)
pd.set_option('max_columns', 5)

如果想要直接指定显示所有的行和列,代码如下:

pd.options.display.max_columns = None
pd.options.display.max_rows = None

 

### 如何在 Jupyter Notebook 中使用 Pandas DataFrame数据分析操作 #### 导入必要的库并加载数据 为了开始处理数据,在Jupyter Notebook环境中需先导入`pandas`库,并读取CSV文件中的数据。 ```python import pandas as pd data = pd.read_csv('bank/bank.csv', sep=';') data.head() ``` 这段代码会展示前五记录,帮助快速了解所载入的数据结构[^2]。 #### 查看DataFrame基本信息 可以利用多种方法查看有关整个数据框的基本信息: - `shape`: 返回数据帧的维度大小。 - `info()`: 提供关于每类型的概览以及是否存在缺失值的情况。 - `describe()`: 自动生成数值型特征的各种汇总统计数据。 ```python print(f'DataFrame dimensions: {data.shape}') data.info() data.describe(include='all') ``` #### 数据筛选与查询 对于特定条件下的子集提取,可以通过布尔索引来实现。例如,要获取年龄大于等于30岁的客户表,则可执如下命令: ```python older_clients = data[data['age'] >= 30] older_clients.head() ``` #### 添加新或修改现有 可以直接向现有的DataFrame对象中增加新的字段,也可以对已有字段进更新。比如计算每位客户的存款年限(假设存在开户日期),并将结果保存到名为`account_years`的新里。 ```python from datetime import date current_year = date.today().year data['account_years'] = current_year - pd.to_datetime(data['date']).dt.year # 注意这里的'date'应替换为实际存储时间戳的名 data[['customer_id', 'account_years']].head() # 显示部分结果用于验证 ``` #### 统计分析功能应用 Pandas内置了许多实用的功能来进基本统计学上的探索性研究工作,如分组聚合、交叉表制作等。这里举例说明按职业分类统计平均余额的方法: ```python average_balance_by_job = data.groupby('job')['balance'].mean() average_balance_by_job.sort_values(ascending=False).to_frame() ``` 上述过程展示了如何在一个典型的金融场景下运用Python及其扩展包完成一系典型任务——从简单的描述性指标计算直到更复杂的多维关系挖掘;而这一切都得益于像Pandas这样的开源项目所提供的强大支持[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二哥不像程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值