召回率-精确率简单理解

参考百度百科召回率

召回率精确率是评价一个样本分类好坏的两项指标。
分类竟然也于统计学有关系!

统计学-数理统计部分知识回顾:
在进行假设检验的时候,有一个四象限。有两个指标,一个是否接受H0,另一个是真实的情况。
在这里插入图片描述

看来万物自有相通之处啊!

计算公式简单理解:

  • 精确率、准确率: T P + T N T P + T N + F P + F N \cfrac{TP+TN}{TP+TN+FP+FN} TP+TN+FP+FNTP+TN
    被分类器正确识别(正类+负类)的概率。
  • 精确率、查准率: T P T P + F P \cfrac{TP}{TP+FP} TP+FPTP
    被机器分类为正/负,其中真正为正/负的概率。
    相信我眼前接受到的这个被分为正/负的可置信的概率。
  • 召回率、查全率: T P T P + F N \cfrac{TP}{TP+FN} TP+FNTP
    是正类,被分出来的概率。
    在文本分类中,如果对于负面评论或者正面评论某一方比较在意,则就要考虑到召回率。举例,如果我们想要找到所有对公司/店家好/坏的评论,则就要考虑召回率的大小。
  • 真正确率(同召回率,查全率)TPR=TP/(TP+FN)
    所有正类,被正确分出来的概率。
  • 假正确率 FPR = FP/(FP+TN)
    被错误分类为正,占据所有被分类错误的概率。
### 绘制目标跟踪的精确-召回率曲线 对于目标跟踪任务,绘制精确-召回率(Precision-Recall, PR) 曲线有助于理解算法在不同阈值设置下检测精度和覆盖范围的表现。PR曲线通过改变决策边界来描绘一系列点,这些点代表了不同的精确召回率组合。 为了实现这一过程,在Python环境中可以利用`matplotlib`库来进行可视化操作,并借助`sklearn.metrics`中的函数计算所需的评价指标。下面提供一段简单的代码示例说明如何基于已知的真实标签以及预测得分构建并显示PR曲线: ```python from sklearn.metrics import precision_recall_curve, auc import matplotlib.pyplot as plt import numpy as np # 假设y_true为目标物体存在与否的实际标记(0或1),scores为模型给出的概分数 y_true = np.array([0, 1, 1, 0, 1]) scores = np.array([0.1, 0.4, 0.35, 0.8, 0.7]) precision, recall, _ = precision_recall_curve(y_true, scores) plt.figure() plt.plot(recall, precision, marker='.') plt.xlabel('Recall') plt.ylabel('Precision') plt.title('Precision/Recall Curve') # 或者 'PR-AUC={0:0.2f}'.format(auc_score)) auc_score = auc(recall, precision) plt.show() print(f"AUC of Precision-Recall curve is {auc_score:.2f}") ``` 这段脚本首先导入必要的包;接着创建了一个小型的数据集作为例子,其中包含了真实类别(`y_true`) 和对应的置信度评分 (`scores`);之后调用了 `precision_recall_curve()` 函数获取各个可能阈值处的精确召回率数值;最后使用Matplotlib画出了PR图,并打印AUC面积值[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值