参考百度百科召回率
召回率和精确率是评价一个样本分类好坏的两项指标。
分类竟然也于统计学有关系!
统计学-数理统计部分知识回顾:
在进行假设检验的时候,有一个四象限。有两个指标,一个是否接受H0,另一个是真实的情况。
看来万物自有相通之处啊!
计算公式简单理解:
- 精确率、准确率:
T
P
+
T
N
T
P
+
T
N
+
F
P
+
F
N
\cfrac{TP+TN}{TP+TN+FP+FN}
TP+TN+FP+FNTP+TN
被分类器正确识别(正类+负类)的概率。 - 精确率、查准率:
T
P
T
P
+
F
P
\cfrac{TP}{TP+FP}
TP+FPTP
被机器分类为正/负,其中真正为正/负的概率。
相信我眼前接受到的这个被分为正/负的可置信的概率。 - 召回率、查全率:
T
P
T
P
+
F
N
\cfrac{TP}{TP+FN}
TP+FNTP
是正类,被分出来的概率。
在文本分类中,如果对于负面评论或者正面评论某一方比较在意,则就要考虑到召回率。举例,如果我们想要找到所有对公司/店家好/坏的评论,则就要考虑召回率的大小。 - 真正确率(同召回率,查全率)TPR=TP/(TP+FN)
所有正类,被正确分出来的概率。 - 假正确率 FPR = FP/(FP+TN)
被错误分类为正,占据所有被分类错误的概率。