摘要
在涉及机器学习领域的分类问题时(尤其是衡量推荐系统性能时),经常会遇到诸如准确率、召回率、ROC、AUC等名词。本文就来详细阐述一下各类评价指数的具体含义和特点。
一、精确率、召回率、F函数、准确率和错误率
1、定义
结合混淆矩阵进行说明
1、
**精确率(Precision)**是指在所有系统判定的“真”的样本中,确实是真的的占比,就是TP/(TP+FP)。
**召回率(Recall)**是指在所有确实为真的样本中,被判为的“真”的占比,就是TP/(TP+FN)。
举一个简单的例子:
100箱苹果里面有95箱好的,5箱坏的。(这是事实前提)
于是我将苹果分为了两堆:90箱我认为是好的,另外10箱我认为是坏的。然而实际上,那90箱是87好3坏,那10箱里有8好2坏。
我们将这个例子与混淆矩阵进行对应,可知:
TP(我认为是好的并且确实是好的)= 87;
FP(我认为是好的但实际上是坏的)= 3;
FN(我认为是坏的但实际上是好的)= 8;
TN(我认为是坏的并且确实是坏的)= 2。
则
准确率 = 87/(87+3);
召回率 = 87/(87+8)
这两个式子分子都是TP(预计对了的好的苹果),分母分别是我认为的所有的好的苹果、实际上所有的好的苹果。
2、准确率与错误率
这个很好理解,准确率就是你区分对了的概率(区分对了包括两种情况——将好苹果分到了好的那一堆(TP)以及将坏苹果分到了坏的那堆(TN)),错误率就是区分错了的。
仍以上面的例子做演示:
准确率 = (87+2)/100;
错误率 = (3+8)/ 100 。
3、F函数