Digital transformation基本概念

Basic Knowledge

1. 信道编码,映射及调制:
在这里插入图片描述
q[l]代表原始二进制码流,c[v]则为经过信道编码后的信息,m[k]则为编码后信息经过mapping后得到的信息。

a) 信道编码: 信道编码通过在发送的数据中添加冗余信息,使得接收端可以检测并纠正传输过程中出现的错误,从而提高数据传输的可靠性
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/3a48c1a9602b405abfa0526a502a3845.png
原有长度为K的二进制编码,经过信道编码后长度变为n,因此编码速率为
R c = 1 n l d ( 2 K ) = K n           [ b i t C o d e s y m b o l ] R_c=\frac{1}{n}ld(2^K)=\frac{K}{n}\ \ \ \ \ \ \ \ \ [\frac{bit}{Codesymbol}] Rc=n1ld(2K)=nK         [Codesymbolbit]
编码冗余:
ρ c = 1 n ( l d ( M c n ) − l d ( 2 K ) ) = l d ( M c ) − R c           [ b i t C o d e s y m b o l ] \rho_c=\frac{1}{n}(ld(M_c^n)-ld(2^K))=ld(M_c)-R_c \ \ \ \ \ \ \ \ \ [\frac{bit}{Codesymbol}] ρc=n1(ld(Mcn)ld(2K))=ld(Mc)Rc         [Codesymbolbit]
在这里插入图片描述
理解编码后为什么总信息量变为 l d ( M c ) : ld(M_c): ld(Mc):
在未编码的情况下,每个symbol只有两个可能的状态,通常用二进制的0和1表示。因此,一个symbol可以携带的信息量是1 bit。
编码后的情况假设我们有种不同的符号,这意味着每个符号可以代表 M c M_c Mc种不同的状态。信息量的计算公式是基于信息论中的“自信息”概念,定义为某个事件发生的概率的负对数。对于等概率的 M M M种符号,每个符号出现的概率是 1 M c \frac{1}{M_c} Mc1

自信息(信息量)的计算公式为:
I ( x ) = − l o g 2 P ( x ) I(x)=-log_2P(x) I(x)=log2P(x)
对于等概率情况, P ( x ) = 1 M c P(x)=\frac{1}{M_c} P(x)=Mc1,因此:
I ( x ) = − l o g 2 ( 1 M c ) = l o g 2 M c I(x)=-log_2(\frac{1}{M_c})=log_2M_c I(x)=log2(Mc1)=log2Mc

例子:
奇偶校验码(Parity Code):奇偶校验码是一种简单的错误检测编码,它通过在数据中添加一个奇偶校验位来检测单个比特错误。
在这里插入图片描述
b)映射:
映射将编码后的符号序列 c [ v ] c[v] c[v]转换为对应的信号编号 m [ k ] m[k] m[k]。这一步骤是将离散的符号转换为可以调制和传输的信号。这些信号编号通常对应于不同的调制状态或幅度,相位等特性。
在这里插入图片描述
映射冗余:
ρ M = l d ( M ) − L V l d ( M c ) \rho_M=ld(M)-\frac{L}{V}ld(M_c) ρM=ld(M)VLld(Mc)
在这里插入图片描述
c)调制:
调制将离散的数字信号 m [ k ] m[k] m[k]转换为连续的模拟信号 s H F ( t ) s_{HF}(t) sHF(t)(如 ,使其能够通过模拟信道(如无线电波、电话线等)进行传输。
在这里插入图片描述
s H F ( t ) = ∑ k = − ∞ ∞ s m [ k ] ( t − k T ) s_{HF}(t)=\sum_{k=-\infty}^{\infty}s_{m[k]}(t-kT) sHF(t)=k=sm[k](tkT)
例子:
在这里插入图片描述
Digital rate after modulation:
R = R C ⋅ L V R=R_C\cdot \frac{L}{V} R=RCVL
调制必须信号满足时间正交条件:
φ s i , s l ( k T ) = ∫ − ∞ + ∞ s i ( t + k T ) s l ∗ ( t )   d t = { 0 f u ¨ r  ∀ k ∈ Z ∖ { 0 } E i l f u ¨ r  k = 0 \varphi_{s_i,s_l}(kT) = \int_{-\infty}^{+\infty} s_i(t + kT) s_l^*(t) \, dt = \begin{cases} 0 & \text{für } \forall k \in \mathbb{Z} \setminus \{0\} \\ E_{il} & \text{für } k = 0 \end{cases} φsi,sl(kT)=+si(t+kT)sl(t)dt={0Eilfu¨kZ{0}fu¨k=0
在这里插入图片描述
d)等效编码及调制:
接收到的信号由于各种原因(例如信号失真、彩色噪声干扰,或者发送端的脉冲成型)导致信号元素不再满足时间正交性。(彩色噪声是指噪声信号在不同频率上的功率谱密度不均匀。这意味着噪声的某些频率分量比其他频率分量更强或更弱。)

例子1:
在这里插入图片描述
s 0 ( t ) 和 s 1 ( t ) s_0(t)和s_1(t) s0(t)s1(t)不满足时间正交原因如下:
在这里插入图片描述
处理:将原有的 s o ( t ) s_o(t) so(t) s 1 ( t ) s_1(t) s1(t)组合为若干个新的 s i ( t ) s_i(t) si(t)且满足时间正交的信号的叠加
在这里插入图片描述
例子2:
在这里插入图片描述
原本时间长度为 T T T的信号,受到干扰后信号长度拓展为 3 T 3T 3T
在这里插入图片描述
s i ( t ) = ± g ( t ) ± g ( t − T ) ± g ( t − 2 T ) s_i(t)=\pm g(t)\pm g(t-T)\pm g(t-2T) si(t)=±g(t)±g(tT)±g(t2T)
s i ( t ) 长度为 T s_i(t)长度为T si(t)长度为T

脉冲调制

1. 基本概念:脉冲幅度调制(PAM)是一种调制技术,通过改变脉冲信号的幅度来表示不同的数字数据。在PAM系统中,每个脉冲的幅度与要传输的数据成比例。具体来说,数字信息通过一系列幅度不同的脉冲来传输。
s ( t ) = ∑ k = − ∞ ∞ a m [ k ] g ( t − k T ) s(t)=\sum_{k=-\infty}^{\infty}a_{m[k]}g(t-kT) s(t)=k=am[k]g(tkT)
其中 g ( t ) g(t) g(t)为基脉冲
例子:
在这里插入图片描述
2. 脉冲幅度调制(PAM)信号的平均功率谱密度
对于离散稳态过程 a [ k ] a[k] a[k],其自相关函数为:
ϕ a a [ κ ] = E { a [ k + κ ] a ∗ [ k ] } \phi_{aa}[\kappa] = \mathbb{E}\{a[k + \kappa] a^*[k]\} ϕaa[κ]=E{a[k+κ]a[k]}
由此可以看到对于稳态过程,其自相关函数只与相对时延 κ \kappa κ有关。
对应频域分量:
Φ a a ( e j 2 π F ) = ∑ k = − ∞ + ∞ ϕ a a [ k ] ⋅ e − j 2 π k F \Phi_{aa}(e^{j2\pi F}) = \sum_{k=-\infty}^{+\infty} \phi_{aa}[k] \cdot e^{-j2\pi k F} Φaa(ej2πF)=k=+ϕaa[k]ej2πkF
但PAM信号:
s ( t ) = ∑ k = − ∞ ∞ a [ k ] g ( t − k T ) s(t)=\sum_{k=-\infty}^{\infty}a{[k]}g(t-kT) s(t)=k=a[k]g(tkT)
不属于稳态过程,因此其自相关函数与时间 t t t有关:
ϕ ( t , τ ) = ϵ ( s ( t + τ ) s ∗ ( t ) ) \phi(t,\tau)=\epsilon(s(t+\tau)s^*(t)) ϕ(t,τ)=ϵ(s(t+τ)s(t))
幸运的是其属于循环稳态过程,即:
ϕ ( t , τ ) = ϕ ( t + k T , τ ) \phi(t,\tau)=\phi(t+kT,\tau) ϕ(t,τ)=ϕ(t+kT,τ)
稳态信号与循环稳态信号:
稳态信号:
考虑一个稳态信号 s ( t ) = A cos ⁡ ( 2 π f 0 t + ϕ ) s(t) = A \cos(2 \pi f_0 t + \phi) s(t)=Acos(2πf0t+ϕ),其中 A A A ϕ \phi ϕ是常数。
自相关函数:
R x ( τ ) = E [ s ( t ) s ( t + τ ) ] R_x(\tau) = E[s(t) s(t + \tau)] Rx(τ)=E[s(t)s(t+τ)]
R x ( τ ) = E [ A cos ⁡ ( 2 π f 0 t + ϕ ) ⋅ A cos ⁡ ( 2 π f 0 ( t + τ ) + ϕ ) ] R_x(\tau) = E[A \cos(2 \pi f_0 t + \phi) \cdot A \cos(2 \pi f_0 (t + \tau) + \phi)] Rx(τ)=E[Acos(2πf0t+ϕ)Acos(2πf0(t+τ)+ϕ)]
使用三角恒等式:

cos ⁡ ( A ) cos ⁡ ( B ) = 1 2 [ cos ⁡ ( A + B ) + cos ⁡ ( A − B ) ] \cos(A) \cos(B) = \frac{1}{2} [\cos(A + B) + \cos(A - B)] cos(A)cos(B)=21[cos(A+B)+cos(AB)]
我们得到:
R x ( τ ) = A 2 ⋅ 1 2 E [ cos ⁡ ( 4 π f 0 t + 2 π f 0 τ + 2 ϕ ) + cos ⁡ ( 2 π f 0 τ ) ] R_x(\tau) = A^2 \cdot \frac{1}{2} E[\cos(4 \pi f_0 t + 2 \pi f_0 \tau + 2 \phi) + \cos(2 \pi f_0 \tau)] Rx(τ)=A221E[cos(4πf0t+2πf0τ+2ϕ)+cos(2πf0τ)]
由于 cos ⁡ ( 4 π f 0 t + 2 π f 0 τ + 2 ϕ ) \cos(4 \pi f_0 t + 2 \pi f_0 \tau + 2 \phi) cos(4πf0t+2πf0τ+2ϕ)在一个周期内的均值为零,只剩下:
R x ( τ ) = A 2 ⋅ 1 2 cos ⁡ ( 2 π f 0 τ ) R_x(\tau) = A^2 \cdot \frac{1}{2} \cos(2 \pi f_0 \tau) Rx(τ)=A221cos(2πf0τ)
由此可见自相关函数 R x ( τ ) R_x(\tau) Rx(τ) 仅依赖于时间差 τ \tau τ,而与绝对时间 t t t 无关。
循环稳态信号:
s ( t ) = ∑ k = − ∞ ∞ a [ k ] g ( t − k T ) s(t) = \sum_{k=-\infty}^{\infty} a[k] g(t - kT) s(t)=k=a[k]g(tkT)
ϕ a a [ κ ] = E { a [ k + κ ] a ∗ [ k ] } \phi_{aa}[\kappa] = E\{a[k + \kappa] a^*[k]\} ϕaa[κ]=E{a[k+κ]a[k]}
自相关函数:
R s ( t , τ ) = E [ s ( t ) s ∗ ( t + τ ) ] R_s(t, \tau) = E[s(t) s^*(t+\tau)] Rs(t,τ)=E[s(t)s(t+τ)]
R s ( t , τ ) = E [ ( ∑ k = − ∞ ∞ a [ k ] g ( t − k T ) ) ( ∑ l = − ∞ ∞ a [ l ] g ∗ ( t + τ − l T ) ) ] R_s(t, \tau) = E \left[ \left( \sum_{k=-\infty}^{\infty} a[k] g(t - kT) \right) \left( \sum_{l=-\infty}^{\infty} a[l] g^*(t + \tau - lT) \right) \right] Rs(t,τ)=E[(k=a[k]g(tkT))(l=a[l]g(t+τlT))]
展开后:
R s ( t , τ ) = ∑ k = − ∞ ∞ ∑ l = − ∞ ∞ E [ a [ k ] a ∗ [ l ] ] g ( t − k T ) g ∗ ( t + τ − l T ) R_s(t, \tau) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} E \left[ a[k] a^*[l] \right] g(t - kT) g^*(t + \tau - lT) Rs(t,τ)=k=l=E[a[k]a[l]]g(tkT)g(t+τlT)
R s ( t , τ ) = ∑ k = − ∞ ∞ ∑ l = − ∞ ∞ ϕ a a [ k − l ] g ( t − k T ) g ∗ ( t + τ − l T ) R_s(t, \tau) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \phi_{aa}[k-l] g(t - kT) g^*(t + \tau - lT) Rs(t,τ)=k=l=ϕaa[kl]g(tkT)g(t+τlT)
通过将 l = k + κ l = k + \kappa l=k+κ 代入上式,可以简化为:
R s ( t , τ ) = ∑ k = − ∞ ∞ ∑ κ = − ∞ ∞ ϕ a a [ κ ] g ( t − k T ) g ∗ ( t + τ − ( k + κ ) T ) R_s(t, \tau) = \sum_{k=-\infty}^{\infty} \sum_{\kappa=-\infty}^{\infty} \phi_{aa}[\kappa] g(t - kT) g^*(t + \tau - (k + \kappa)T) Rs(t,τ)=k=κ=ϕaa[κ]g(tkT)g(t+τ(k+κ)T)
进一步简化后,我们得到:
R s ( t , τ ) = ∑ κ = − ∞ ∞ ϕ a a [ κ ] ∑ k = − ∞ ∞ g ( t − k T ) g ∗ ( t + τ − ( k + κ ) T ) R_s(t, \tau) = \sum_{\kappa=-\infty}^{\infty} \phi_{aa}[\kappa] \sum_{k=-\infty}^{\infty} g(t - kT) g^*(t + \tau - (k + \kappa)T) Rs(t,τ)=κ=ϕaa[κ]k=g(tkT)g(t+τ(k+κ)T)
此表达式显示了自相关函数不仅依赖于时间差 τ \tau τ,还依赖于时间 t t t T T T 的周期性。
具体例子:
考虑信号 s ( t ) = ∑ k = − ∞ ∞ a [ k ] g ( t − k T ) s(t) = \sum_{k=-\infty}^{\infty} a[k] g(t - kT) s(t)=k=a[k]g(tkT),其中 g ( t ) = cos ⁡ ( 2 π f 0 t ) g(t) = \cos(2\pi f_0 t) g(t)=cos(2πf0t) a [ k ] a[k] a[k] 是一个二进制码流,取值 0 或 1。
自相关函数 R s ( t , τ ) R_s(t, \tau) Rs(t,τ) 定义为:
R s ( t , τ ) = E [ s ( t ) s ∗ ( t + τ ) ] R_s(t, \tau) = E[s(t) s^*(t + \tau)] Rs(t,τ)=E[s(t)s(t+τ)]

代入 s ( t ) s(t) s(t) 的表达式,我们得到:
R s ( t , τ ) = E [ ( ∑ k = − ∞ ∞ a [ k ] cos ⁡ ( 2 π f 0 ( t − k T ) ) ) ( ∑ l = − ∞ ∞ a [ l ] cos ⁡ ( 2 π f 0 ( t + τ − l T ) ) ) ] R_s(t, \tau) = E \left[ \left( \sum_{k=-\infty}^{\infty} a[k] \cos(2\pi f_0 (t - kT)) \right) \left( \sum_{l=-\infty}^{\infty} a[l] \cos(2\pi f_0 (t + \tau - lT)) \right) \right] Rs(t,τ)=E[(k=a[k]cos(2πf0(tkT)))(l=a[l]cos(2πf0(t+τlT)))]

展开后:
R s ( t , τ ) = ∑ k = − ∞ ∞ ∑ l = − ∞ ∞ E [ a [ k ] a [ l ] ] cos ⁡ ( 2 π f 0 ( t − k T ) ) cos ⁡ ( 2 π f 0 ( t + τ − l T ) ) R_s(t, \tau) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} E \left[ a[k] a[l] \right] \cos(2\pi f_0 (t - kT)) \cos(2\pi f_0 (t + \tau - lT)) Rs(t,τ)=k=l=E[a[k]a[l]]cos(2πf0(tkT))cos(2πf0(t+τlT))

对于二进制码流 a [ k ] a[k] a[k],我们有:
E [ a [ k ] ] = p E[a[k]] = p E[a[k]]=p
E [ a [ k ] a [ l ] ] = { p if  k = l p 2 if  k ≠ l E[a[k] a[l]] = \begin{cases} p & \text{if } k = l \\ p^2 & \text{if } k \neq l \end{cases} E[a[k]a[l]]={pp2if k=lif k=l
其中 p p p a [ k ] a[k] a[k] 取值为 1 的概率。

代入上述期望值,我们得到:
R s ( t , τ ) = ∑ k = − ∞ ∞ E [ a [ k ] ] cos ⁡ ( 2 π f 0 ( t − k T ) ) cos ⁡ ( 2 π f 0 ( t + τ − k T ) ) + ∑ k ≠ l E [ a [ k ] a [ l ] ] cos ⁡ ( 2 π f 0 ( t − k T ) ) cos ⁡ ( 2 π f 0 ( t + τ − l T ) ) R_s(t, \tau) = \sum_{k=-\infty}^{\infty} E[a[k]] \cos(2\pi f_0 (t - kT)) \cos(2\pi f_0 (t + \tau - kT)) + \sum_{k \neq l} E[a[k] a[l]] \cos(2\pi f_0 (t - kT)) \cos(2\pi f_0 (t + \tau - lT)) Rs(t,τ)=k=E[a[k]]cos(2πf0(tkT))cos(2πf0(t+τkT))+k=lE[a[k]a[l]]cos(2πf0(tkT))cos(2πf0(t+τlT))

使用三角恒等式:
cos ⁡ ( A ) cos ⁡ ( B ) = 1 2 [ cos ⁡ ( A + B ) + cos ⁡ ( A − B ) ] \cos(A) \cos(B) = \frac{1}{2} [\cos(A+B) + \cos(A-B)] cos(A)cos(B)=21[cos(A+B)+cos(AB)]

展开后:
R s ( t , τ ) = ∑ k = − ∞ ∞ p 1 2 [ cos ⁡ ( 2 π f 0 ( 2 t + τ − 2 k T ) ) + cos ⁡ ( 2 π f 0 τ ) ] + ∑ k ≠ l p 2 1 2 [ cos ⁡ ( 2 π f 0 ( 2 t + τ − ( k + l ) T ) ) + cos ⁡ ( 2 π f 0 ( τ − ( k − l ) T ) ) ] R_s(t, \tau) = \sum_{k=-\infty}^{\infty} p \frac{1}{2} \left[ \cos(2\pi f_0 (2t + \tau - 2kT)) + \cos(2\pi f_0 \tau) \right] + \sum_{k \neq l} p^2 \frac{1}{2} \left[ \cos(2\pi f_0 (2t + \tau - (k+l)T)) + \cos(2\pi f_0 (\tau - (k-l)T)) \right] Rs(t,τ)=k=p21[cos(2πf0(2t+τ2kT))+cos(2πf0τ)]+k=lp221[cos(2πf0(2t+τ(k+l)T))+cos(2πf0(τ(kl)T))]

我们关注主要项,简化后:
R s ( t , τ ) = p 2 cos ⁡ ( 2 π f 0 τ ) + p 2 ∑ k = − ∞ ∞ cos ⁡ ( 2 π f 0 ( 2 t + τ − 2 k T ) ) R_s(t, \tau) = \frac{p}{2} \cos(2\pi f_0 \tau) + \frac{p}{2} \sum_{k=-\infty}^{\infty} \cos(2\pi f_0 (2t + \tau - 2kT)) Rs(t,τ)=2pcos(2πf0τ)+2pk=cos(2πf0(2t+τ2kT))

由于第二项在有限周期内求和结果对整个自相关函数影响较小,我们可以简化为:
R s ( t , τ ) = p 2 cos ⁡ ( 2 π f 0 τ ) + p 2 G ( t , τ ) R_s(t, \tau) = \frac{p}{2} \cos(2\pi f_0 \tau) + \frac{p}{2} G(t, \tau) Rs(t,τ)=2pcos(2πf0τ)+2pG(t,τ)

这里 G ( t , τ ) G(t, \tau) G(t,τ) 是一个周期性函数,表示信号随时间 t t t 的变化。这个结果表明,信号 s ( t ) s(t) s(t) 是一个循环稳态信号,其自相关函数 R s ( t , τ ) R_s(t, \tau) Rs(t,τ) 与时间 t t t 相关。
ϕ ˉ s s ( τ ) = 1 T ∫ 0 T E { s ( t + τ ) s ∗ ( t ) }   d t = 1 T ∫ 0 T E { ∑ k ∑ l α [ k ] α ∗ [ l ] g ( t + τ − k T ) g ∗ ( t − l T ) }   d t = 1 T ∫ 0 T ∑ k ∑ l E { α [ k ] α ∗ [ l ] } g ( t + τ − k T ) g ∗ ( t − l T )   d t = 1 T ∫ 0 T ∑ κ ∑ l E { α [ k ] α ∗ [ k − κ ] } g ( t + τ − k T ) g ∗ ( t − ( k − κ ) T )   d t \bar{\phi}_{ss}(\tau) = \frac{1}{T} \int_{0}^{T} \mathbb{E} \{ s(t + \tau)s^{*}(t) \} \, dt = \frac{1}{T} \int_{0}^{T} \mathbb{E} \left\{ \sum_{k} \sum_{l} \alpha[k] \alpha^{*}[l] g(t + \tau - kT) g^{*}(t - lT) \right\} \, dt \\ = \frac{1}{T} \int_{0}^{T} \sum_{k} \sum_{l} \mathbb{E} \left\{ \alpha[k] \alpha^{*}[l] \right\} g(t + \tau - kT) g^{*}(t - lT) \, dt \\ = \frac{1}{T} \int_{0}^{T} \sum_{\kappa} \sum_{l} \mathbb{E} \left\{ \alpha[k] \alpha^{*}[k - \kappa] \right\} g(t + \tau - kT) g^{*}(t - (k - \kappa)T) \, dt ϕˉss(τ)=T10TE{s(t+τ)s(t)}dt=T10TE{klα[k]α[l]g(t+τkT)g(tlT)}dt=T10TklE{α[k]α[l]}g(t+τkT)g(tlT)dt=T10TκlE{α[k]α[kκ]}g(t+τkT)g(t(kκ)T)dt
ϕ a a [ κ ] = E { a [ k + κ ] a ∗ [ k ] \phi_{aa}[\kappa] = E \{ a[k + \kappa] a^*[k] ϕaa[κ]=E{a[k+κ]a[k]代入式子中:
1 T ∑ κ ϕ a a [ κ ] ∑ k ∫ 0 T g ( t + τ − k T ) g ∗ ( t − ( k − κ ) T ) d t \frac{1}{T} \sum_{\kappa} \phi_{aa}[\kappa] \sum_k \int_0^T g(t + \tau - kT) g^*(t - (k - \kappa)T) dt T1κϕaa[κ]k0Tg(t+τkT)g(t(kκ)T)dt
因为 ∑ k ∫ 0 T f ( t − k T ) d t = ∫ − ∞ ∞ f ( t ) d t \sum_k \int_0^T f(t - kT) dt = \int_{-\infty}^{\infty} f(t) dt k0Tf(tkT)dt=f(t)dt:
1 T ∑ κ ϕ a a [ κ ] ∫ − ∞ ∞ g ( t + τ ) g ∗ ( t + κ T ) d t \frac{1}{T} \sum_{\kappa} \phi_{aa}[\kappa] \int_{-\infty}^{\infty} g(t + \tau) g^*(t + \kappa T) dt \\ T1κϕaa[κ]g(t+τ)g(t+κT)dt
φ g g ( τ ) = g ( t ) ∗ g ∗ ( − t ) = ∫ − ∞ ∞ g ( t + τ ) g ∗ ( t ) d t \varphi_{gg}(\tau) = g(t) * g^*(-t) = \int_{-\infty}^{\infty} g(t + \tau) g^*(t) dt φgg(τ)=g(t)g(t)=g(t+τ)g(t)dt代入式子中:
ϕ ~ s s ( τ ) = 1 T ∑ κ ϕ a a [ κ ] φ g g ( τ − κ T ) \begin{align*} \tilde{\phi}_{ss}(\tau) &= \frac{1}{T} \sum_{\kappa} \phi_{aa}[\kappa] \varphi_{gg}(\tau - \kappa T) \end{align*} ϕ~ss(τ)=T1κϕaa[κ]φgg(τκT)

频域:
Φ ˉ s s ( f ) = F τ { ϕ ~ s s ( τ ) } = F τ { 1 T ∑ κ ϕ a a [ κ ] φ g g ( τ − κ T ) } = 1 T ∑ κ ϕ a a [ κ ] ⋅ F τ { φ g g ( τ − κ T ) } = 1 T ∑ κ ϕ a a [ κ ] ⋅ F τ { φ g g ( τ ) } ⋅ e − j 2 π f κ T = 1 T ∑ κ ϕ a a [ κ ] ⋅ ∣ G ( f ) ∣ 2 ⋅ e − j 2 π f κ T = 1 T Φ a a ( e j 2 π f T ) ⋅ ∣ G ( f ) ∣ 2 \begin{align*} \bar{\Phi}_{ss}(f) &= \mathcal{F}_{\tau} \left\{ \tilde{\phi}_{ss}(\tau) \right\} \\ &= \mathcal{F}_{\tau} \left\{ \frac{1}{T} \sum_{\kappa} \phi_{aa}[\kappa] \varphi_{gg}(\tau - \kappa T) \right\} \\ &= \frac{1}{T} \sum_{\kappa} \phi_{aa}[\kappa] \cdot \mathcal{F}_{\tau} \left\{ \varphi_{gg}(\tau - \kappa T) \right\} \\ &= \frac{1}{T} \sum_{\kappa} \phi_{aa}[\kappa] \cdot \mathcal{F}_{\tau} \left\{ \varphi_{gg}(\tau) \right\} \cdot e^{-j2\pi f \kappa T}\\ &= \frac{1}{T} \sum_{\kappa} \phi_{aa}[\kappa] \cdot|G(f)|^2\cdot e^{-j2\pi f \kappa T}\\ &= \frac{1}{T} \Phi_{aa}(e^{j2\pi fT}) \cdot |G(f)|^2 \end{align*} Φˉss(f)=Fτ{ϕ~ss(τ)}=Fτ{T1κϕaa[κ]φgg(τκT)}=T1κϕaa[κ]Fτ{φgg(τκT)}=T1κϕaa[κ]Fτ{φgg(τ)}ej2πfκT=T1κϕaa[κ]G(f)2ej2πfκT=T1Φaa(ej2πfT)G(f)2
在这里插入图片描述
所以基脉冲 g ( t ) g(t) g(t)的最小带宽必须满足大于等于 1 T \frac{1}{T} T1,才能保证 Φ a a ( e j 2 π f T ) \Phi_{aa}(e^{j2\pi fT}) Φaa(ej2πfT)在这个频率范围内存在一个完整周期。

对于等概率分布的 a m a_m am P ( a m ) = 1 M P(a_m)=\frac{1}{M} P(am)=M1
ϕ a a [ k ] = { σ a 2 + ∣ m a ∣ 2 , f u ¨ r  k = 0 ∣ m a ∣ 2 , f u ¨ r  k ∈ Z ∖ { 0 } \phi_{aa}[k] = \begin{cases} \sigma_a^2 + |m_a|^2, & \text{für } k = 0 \\ |m_a|^2, & \text{für } k \in \mathbb{Z} \setminus \{0\} \end{cases} ϕaa[k]={σa2+ma2,ma2,fu¨k=0fu¨kZ{0}
k = 0 k = 0 k=0 时,自相关函数为:
ϕ a a [ 0 ] = E { a [ i ] a ∗ [ i ] } = E { ∣ a [ i ] ∣ 2 } \phi_{aa}[0] = E \{ a[i] a^*[i] \} = E \{ |a[i]|^2 \} ϕaa[0]=E{a[i]a[i]}=E{a[i]2}
信号 a [ i ] a[i] a[i] 的方差和均值关系如下:
σ a 2 = E { ∣ a [ i ] − m a ∣ 2 } \sigma_a^2 = E \{ |a[i] - m_a|^2 \} σa2=E{a[i]ma2}

将其展开可以得到:
σ a 2 = E { ∣ a [ i ] ∣ 2 − 2 Re ⁡ ( a [ i ] m a ∗ ) + ∣ m a ∣ 2 } \sigma_a^2 = E \{ |a[i]|^2 - 2 \operatorname{Re}(a[i] m_a^*) + |m_a|^2 \} σa2=E{a[i]22Re(a[i]ma)+ma2}

由于 m a m_a ma 是常数,可以将其从期望中提取出来:
σ a 2 = E { ∣ a [ i ] ∣ 2 } − 2 Re ⁡ ( m a E { a [ i ] } ) + ∣ m a ∣ 2 \sigma_a^2 = E \{ |a[i]|^2 \} - 2 \operatorname{Re}(m_a E \{ a[i] \}) + |m_a|^2 σa2=E{a[i]2}2Re(maE{a[i]})+ma2

因为 m a m_a ma 是信号的均值,所以:
E { a [ i ] } = m a E \{ a[i] \} = m_a E{a[i]}=ma

因此可以得到:
σ a 2 = E { ∣ a [ i ] ∣ 2 } − 2 ∣ m a ∣ 2 + ∣ m a ∣ 2 \sigma_a^2 = E \{ |a[i]|^2 \} - 2 |m_a|^2 + |m_a|^2 σa2=E{a[i]2}2∣ma2+ma2

简化后为:
E { ∣ a [ i ] ∣ 2 } = σ a 2 + ∣ m a ∣ 2 E \{ |a[i]|^2 \} = \sigma_a^2 + |m_a|^2 E{a[i]2}=σa2+ma2
对于独立同分布的信号 a m a_m am,不同时间点的信号是独立的。
因此,当 k ≠ 0 k \neq 0 k=0时,有:
ϕ a a [ k ] = E { a m [ i + k ] } ⋅ E { a m ∗ [ i ] } \phi_{aa}[k] = E \{ a_m[i + k] \} \cdot E \{ a_m^*[i] \} ϕaa[k]=E{am[i+k]}E{am[i]}

由于 a m a_m am 是独立同分布的信号,其均值为 m a m_a ma,所以:
E { a m [ i + k ] } = m a E \{ a_m[i + k] \} = m_a E{am[i+k]}=ma
E { a m ∗ [ i ] } = m a ∗ E \{ a_m^*[i] \} = m_a^* E{am[i]}=ma

因此,可以得到:
ϕ a a [ k ] = m a ⋅ m a ∗ = ∣ m a ∣ 2 \phi_{aa}[k] = m_a \cdot m_a^* = |m_a|^2 ϕaa[k]=mama=ma2
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
最终推导结果:
Φ a a ( F ) = σ a 2 + { ∣ m a ∣ 2 1 T ∑ ℓ = − ∞ + ∞ δ ( F − ℓ T ) } \Phi_{aa}(F) = \sigma_a^2 + \left\{ |m_a|^2 \frac{1}{T} \sum_{\ell=-\infty}^{+\infty} \delta\left(F - \frac{\ell}{T}\right) \right\} Φaa(F)=σa2+{ma2T1=+δ(FT)}
Φ ˉ s s ( f ) = σ a 2 ∣ G ( f ) ∣ 2 T + ∣ m a ∣ 2 ∣ G ( f ) ∣ 2 T 2 ∑ ℓ = − ∞ + ∞ δ ( f − ℓ T ) \bar{\Phi}_{s s}(f)=\sigma_{a}^{2} \frac{|G(f)|^{2}}{T}+\left|m_{a}\right|^{2} \frac{|G(f)|^{2}}{T^{2}} \sum_{\ell=-\infty}^{+\infty} \delta\left(f-\frac{\ell}{T}\right) Φˉss(f)=σa2TG(f)2+ma2T2G(f)2=+δ(fT)

因此若幅度系数的均值不为零,则在符号频率 1/T 的间隔处会出现离散谱线,这会导致大部分能量分散到我们不关心的频率上。

  • 6
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Flink 是一个流式处理和批处理的分布式计算框架。它具有以下基本概念: 1. 事件流(Event Stream):Flink 是一个流式处理框架,它能够处理连续的事件流。事件流可以是无界的(无限延续)或有界的(有一个结束点)。Flink 可以对这些事件流进行高效的处理和转换。 2. 作业(Job):在 Flink 中,用户定义的流处理或批处理任务被称为作业。一个作业由一个或多个算子(operator)组成,每个算子接收输入数据流并产生输出数据流。 3. 算子(Operator):算子是 Flink 中执行计算的基本单位。它可以是数据源(source)、转换操作(transformation)或数据接收器(sink)。算子接收一个或多个输入数据流,并生成一个或多个输出数据流。 4. 窗口(Window):窗口是 Flink 中用于对事件流进行分组和聚合操作的机制。窗口可以根据事件的时间或者数量进行划分,然后在窗口上应用聚合操作。 5. 状态(State):状态是 Flink 中用于存储和管理用户定义的数据的机制。状态可以在算子之间共享和传递,从而实现复杂的计算逻辑。 6. 检查点(Checkpoint):检查点是 Flink 中实现容错的机制,用于保证在发生故障时能够从故障中快速恢复。检查点会定期将应用程序的状态保存到持久化存储中,并可以用于重新启动应用程序。 这些是 Flink 的一些基本概念,它们共同构成了 Flink 的核心功能和特性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值