傅里叶变换总结

1. 傅里叶级数FS

任何周期信号都可以表示为若干个正弦函数和余弦函数之和:
f ( t ) = a 0 + ∑ 0 ∞ ( a n c o s ( 2 π n t T ) + b n s i n ( 2 π n t T ) ) f(t) = a_0 + \sum^{\infty}_0(a_ncos(\frac{2\pi nt}{T}) + b_nsin(\frac{2\pi nt}{T}))\\ f(t)=a0+0(ancos(T2πnt)+bnsin(T2πnt))
其中 a 0 = 1 T ∫ 0 T f ( t ) d t a_{0}=\frac{1}{T} \int_{0}^{T} f(t) d t a0=T10Tf(t)dt a n = 2 T ∫ 0 T f ( t ) cos ⁡ ( 2 π n t T ) d t a_{n}=\frac{2}{T} \int_{0}^{T} f(t) \cos \left(\frac{2 \pi n t}{T}\right) d t an=T20Tf(t)cos(T2πnt)dt b n = 2 T ∫ 0 T f ( t ) sin ⁡ ( 2 π n t T ) d t b_{n}=\frac{2}{T} \int_{0}^{T} f(t) \sin \left(\frac{2 \pi n t}{T}\right) d t bn=T20Tf(t)sin(T2πnt)dt

例子: 假设我们有一个周期为T的方波信号f(t):
f ( t ) = A , 0 ≤ t ≤ T 2 f ( t ) = − A , T 2 ≤ t ≤ T f(t) = A, 0\leq t \le \frac{T}{2} \\ f(t) = -A, \frac{T}{2} \leq t \le T f(t)=A,0t2Tf(t)=A,2TtT
因为方波为奇函数,所以只存在奇数次谐波的正弦项 b n b_n bn:
b n = 2 T ( ∫ 0 T / 2 A sin ⁡ ( 2 π n t T ) d t + ∫ T / 2 T − A sin ⁡ ( 2 π n t T ) d t ) b_{n}=\frac{2}{T}\left(\int_{0}^{T / 2} A \sin \left(\frac{2 \pi n t}{T}\right) d t+\int_{T / 2}^{T}-A \sin \left(\frac{2 \pi n t}{T}\right) d t\right) bn=T2(0T/2Asin(T2πnt)dt+T/2TAsin(T2πnt)dt)
将这些系数带入傅里叶级数公式中,我们可以得到方波信号的傅里叶级数展开形式:
f ( t ) = ∑ k = 0 ∞ 4 A ( 2 k + 1 ) π sin ⁡ ( 2 π ( 2 k + 1 ) t T ) f(t) = \sum_{k=0}^{\infty} \frac{4A}{(2k+1)\pi} \sin \left( \frac{2\pi(2k+1)t}{T} \right) f(t)=k=0(2k+1)π4Asin(T2π(2k+1)t)
在这里插入图片描述
在这里插入图片描述
f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n ω t + b n sin ⁡ n ω t ) f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n ⋅ 1 2 ( e i n ω t + e − i n ω t ) − 1 2 i b n ( e i n ω t − e − i n ω t ) ] f ( t ) = ∑ − ∞ ∞ C n e i n ω t f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos n\omega t + b_n \sin n\omega t \right)\\ f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cdot \frac{1}{2} \left( e^{i n \omega t} + e^{-i n \omega t} \right) - \frac{1}{2i} b_n \left( e^{i n \omega t} - e^{-i n \omega t} \right) \right]\\ f(t) = \sum^{\infty}_{-\infty}C_ne^{in\omega t} f(t)=2a0+n=1(ancost+bnsint)f(t)=2a0+n=1[an21(einωt+einωt)2i1bn(einωteinωt)]f(t)=Cneinωt
其中 C n C_n Cn表示为: C n = a 0 2 , n = 0 C n = a n − i b n 2 , n = 1 , 2 , 3 , 4 , … C n = a n + i b n 2 , n = − 1 , − 2 , − 3 , − 4 , … C_n = \frac{a_0}{2}, n = 0 \\ C_n =\frac{a_n - i b_n}{2}, n = 1, 2, 3, 4, \ldots \\ C_n =\frac{a_n + i b_n}{2}, n = -1, -2, -3, -4, \ldots Cn=2a0,n=0Cn=2anibn,n=1,2,3,4,Cn=2an+ibn,n=1,2,3,4,
所以周期信号 f ( t ) = f ( t + T ) f(t) = f(t + T) f(t)=f(t+T)的傅里叶级数可以总结为:
f ( t ) = ∑ n = − ∞ ∞ C n e i n ω t C n = 1 T ∫ 0 T f ( t ) e − i n ω t   d t f(t) = \sum_{n=-\infty}^{\infty} C_n e^{i n \omega t}\\ C_n = \frac{1}{T} \int_{0}^{T} f(t) e^{-i n \omega t} \, dt f(t)=n=CneinωtCn=T10Tf(t)einωtdt

2. 傅里叶变换FT

当信号为非周期信号时,即傅里叶级数中的T趋近于无穷大时,傅里叶级数可视为傅里叶变换
lim ⁡ T → ∞ f T ( t ) = f ( t ) f T ( t ) = f ( t + T ) f T ( t ) = ∑ n = − ∞ ∞ C n e i n ω 0 t \lim_{T \to \infty} f_T(t) = f(t)\\ f_T(t) = f(t + T)\\ f_T(t) = \sum_{n=-\infty}^{\infty} C_n e^{i n \omega_0 t} TlimfT(t)=f(t)fT(t)=f(t+T)fT(t)=n=Cneinω0t
在傅里叶级数中 ω 0 = 2 π T \omega_0 = \frac{2\pi}{T} ω0=T2π
Δ ω = ( n + 1 ) ω 0 − n ω 0 = ω 0 = 2 π T \Delta \omega = (n+1)\omega_0 - n\omega_0 = \omega_0 = \frac{2\pi}{T} Δω=(n+1)ω0nω0=ω0=T2π
1 T = Δ ω 2 π \frac{1}{T} = \frac{\Delta \omega}{2\pi} T1=2πΔω, 当 T ↑ , Δ ω ↓ T \uparrow, \Delta \omega \downarrow T,Δω,则 Δ ω \Delta \omega Δω逐渐由离散趋近于连续。
f T ( t ) = ∑ n = − ∞ ∞ ( 1 T ∫ − 2 T 2 T f T ( t ) e − i n ω 0 t d t ) e i n ω 0 t → f T ( t ) = f T ( t ) = ∑ n = − ∞ ∞ Δ ω 2 π ∫ − T 2 T 2 f T ( t ) e − i n ω 0 t   d t   e i n ω 0 t f_T(t) = \sum_{n=-\infty}^{\infty} \left( \frac{1}{T} \int_{-\frac{2}{T}}^{\frac{2}{T}} f_T(t) e^{-i n \omega_0 t} dt \right) e^{i n \omega_0 t} \rightarrow f_T(t) = f_T(t) = \sum_{n=-\infty}^{\infty} \frac{\Delta \omega}{2\pi} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_T(t) e^{-i n \omega_0 t} \, dt \, e^{i n \omega_0 t} fT(t)=n=(T1T2T2fT(t)einω0tdt)einω0tfT(t)=fT(t)=n=2πΔω2T2TfT(t)einω0tdteinω0t
T → ∞ : ∫ − T 2 T 2 d t → ∫ − ∞ ∞ d t , n ω 0 → ω : ∑ n = − ∞ ∞ Δ ω → ∫ − ∞ ∞ d ω T \to \infty: \int_{-\frac{T}{2}}^{\frac{T}{2}} dt \to \int_{-\infty}^{\infty} dt, \\n \omega_0 \to \omega: \sum_{n=-\infty}^{\infty} \Delta \omega \to \int_{-\infty}^{\infty} d\omega T:2T2Tdtdt,nω0ω:n=Δωdω
所以:
f T ( t ) = ∑ n = − ∞ ∞ Δ ω 2 π ∫ − T 2 T 2 f T ( t ) e − i n ω t   d t   e i n ω t → f ( t ) = 1 2 π ∫ − ∞ ∞ ( ∫ − ∞ ∞ f ( t ) e − i ω t   d t ) e i ω t   d ω f_T(t) = \sum_{n=-\infty}^{\infty} \frac{\Delta \omega}{2\pi} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_T(t) e^{-i n \omega t} \, dt \, e^{i n \omega t} \rightarrow f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty} f(t) e^{-i \omega t} \, dt \right) e^{i \omega t} \, d\omega fT(t)=n=2πΔω2T2TfT(t)einωtdteinωtf(t)=2π1(f(t)etdt)etdω
傅里叶变换表达式推导为:
F ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t   d t f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω t   d ω F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i \omega t} \, dt\\ f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i \omega t} \, d\omega F(ω)=f(t)etdtf(t)=2π1F(ω)etdω

3. 离散时间傅里叶变换DTFT

DTFT为FT的离散情况(DTFT可视为z变换在单位圆上的值),对FT原本连续的时域信号以 Δ t \Delta t Δt为步进进行取样:
F ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t   d t → ∑ − ∞ ∞ f [ n ] e − i ω n F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i \omega t} \, dt \rightarrow \sum^{\infty}_{-\infty}f[n]e^{-i \omega n} F(ω)=f(t)etdtf[n]eiωn
1. t → n 2. ∫ − ∞ ∞ d t → ∑ n = − ∞ ∞ 3. e − i ω t → e − i n ω t ( Δ t = 1 ) → e i n ω 1. \quad t \to n \\ 2. \quad \int_{-\infty}^{\infty} dt \to \sum_{n=-\infty}^{\infty} \\ 3. \quad e^{-i \omega t} \to e^{-i n \omega t} \quad (\Delta t = 1) \rightarrow e^{i n \omega} 1.tn2.dtn=3.eteinωt(Δt=1)einω
详细转换过程如下:

W.Kellermann DSP

Fig 1. FT and DTFT [Cite From W.Kellermann DSP]

x s ( t ) = x c ( t ) ⋅ ∑ k = − ∞ ∞ δ ( t − k T ) = ∑ k = − ∞ ∞ x c ( k T ) ⋅ δ ( t − k T ) x_s(t) = x_c(t) \cdot \sum_{k=-\infty}^{\infty} \delta(t - kT) = \sum_{k=-\infty}^{\infty} x_c(kT) \cdot \delta(t - kT) xs(t)=xc(t)k=δ(tkT)=k=xc(kT)δ(tkT)
∑ k = − ∞ ∞ δ ( t − k T ) ⟷ F 2 π T ∑ n = − ∞ ∞ δ ( ω − 2 π T n ) \sum_{k=-\infty}^{\infty} \delta(t - kT) \overset{\mathcal{F}}{\longleftrightarrow} \frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta \left( \omega - \frac{2\pi}{T} n \right) k=δ(tkT)FT2πn=δ(ωT2πn)
X s ( j ω ) = 1 2 π X c ( j ω ) ∗ 2 π T ∑ n = − ∞ ∞ δ ( ω − 2 π T n ) = 1 T ∑ n = − ∞ ∞ X c ( j [ ω − 2 π T n ] ) X_s(j\omega) = \frac{1}{2\pi} X_c(j\omega) * \frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta \left( \omega - \frac{2\pi}{T} n \right) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X_c \left( j \left[ \omega - \frac{2\pi}{T} n \right] \right) Xs()=2π1Xc()T2πn=δ(ωT2πn)=T1n=Xc(j[ωT2πn])
所以对FT进行采样后,信号频谱以fs为周期重复,信号频谱幅度变为原有的 1 T \frac{1}{T} T1, 且采样频率fs需要大于原有信号频谱宽度 f b f_b fb两倍,即满足奈奎斯特采样定理。

此时时域信号是离散的,但在频域上通过DTFT变换得到的频谱是一个连续的周期性函数。这种连续的频谱对于实际的计算机处理来说是一个挑战,因为计算机只能处理离散的数值数据。为了在计算机上进行处理,通常会使用离散傅里叶变换(DFT),这是对DTFT的一个离散化和有限化的版本。DFT在频域上生成离散的频谱,这样就可以在计算机上处理。这也是快速傅里叶变换(FFT)算法的基础,FFT算法可以高效地计算DFT。

4. 离散傅里叶级数DFS

将DTFT中离散非周期的时域信号拓展为周期信号再做傅里叶变换即为DFS:
x ~ ( n ) = x ~ ( n + r N ) \tilde{x}(n) = \tilde{x}(n + rN) x~(n)=x~(n+rN)
FS:
f ( t ) = ∑ n = − ∞ ∞ C n e i n ω t C n = 1 T ∫ 0 T f ( t ) e − i n ω t   d t f(t) = \sum_{n=-\infty}^{\infty} C_n e^{i n \omega t}\\ C_n = \frac{1}{T} \int_{0}^{T} f(t) e^{-i n \omega t} \, dt f(t)=n=CneinωtCn=T10Tf(t)einωtdt
C n C_n Cn代入 f ( t ) f(t) f(t)
f ( t ) = ∑ n = − ∞ ∞ ( 1 T ∫ 0 T f ( t ) e − i n ω t   d t ) e i n ω t f(t) = \sum_{n=-\infty}^{\infty} \left( \frac{1}{T} \int_{0}^{T} f(t) e^{-i n \omega t} \, dt \right) e^{i n \omega t} f(t)=n=(T10Tf(t)einωtdt)einωt
因为DFS的时域信号相较于FS变为离散周期信号,所以:
1.   t → n 2.   T → N 3.   x ^ ( t ) → x ^ [ n ] 4.   e i 2 π T n t → e i 2 π N n k 1.\ t \to n \\ 2.\ T \to N \\ 3.\ \hat{x}(t) \to \hat{x}[n] \\ 4.\ e^{i \frac{2\pi}{T} n t} \to e^{i \frac{2\pi}{N} n k} 1. tn2. TN3. x^(t)x^[n]4. eiT2πnteiN2πnk

f ( n ) = ∑ n = − ∞ ∞ 1 N ∑ n = 0 N − 1 f ( n ) e − i 2 π N k n ⋅ e i 2 π N k n f(n)=\sum_{n=-\infty}^{\infty} \frac{1}{N} \sum_{n=0}^{N-1} f(n) e^{-i \frac{2\pi}{N} k n} \cdot e^{i \frac{2\pi}{N} k n} f(n)=n=N1n=0N1f(n)eiN2πkneiN2πkn
DFS:
X ~ ( k ) = ∑ n = 0 N − 1 x ~ ( n ) e − j 2 π N k n x ~ ( n ) = 1 N ∑ k = 0 N − 1 X ~ ( k ) e j 2 π N k n \tilde{X}(k) = \sum_{n=0}^{N-1} \tilde{x}(n) e^{-j \frac{2\pi}{N} k n}\\ \tilde{x}(n) = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}(k) e^{j \frac{2\pi}{N} k n} X~(k)=n=0N1x~(n)ejN2πknx~(n)=N1k=0N1X~(k)ejN2πkn

5. 离散傅里叶变换DFT

DFT为DFS第一个周期的DFS:
X ( k ) = ∑ n = 0 N − 1 x ( n ) e − j 2 π N k n x ( n ) = 1 N ∑ k = 0 N − 1 X ( k ) e j 2 π N k n {X}(k) = \sum_{n=0}^{N-1} {x}(n) e^{-j \frac{2\pi}{N} k n}\\ {x}(n) = \frac{1}{N} \sum_{k=0}^{N-1} {X}(k) e^{j \frac{2\pi}{N} k n} X(k)=n=0N1x(n)ejN2πknx(n)=N1k=0N1X(k)ejN2πkn
各类型傅里叶变换示意图如下:在这里插入图片描述

  • 28
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值