TensorFlow中张量增加纬度和词向量查找一些操作

TensorFlow中embedding_lookup操作

import tensorflow as tf

a=tf.Variable(tf.random_normal([2,4]),tf.float32)
b=tf.Variable(tf.random_normal([2,3]),tf.float32)
c=tf.Variable(tf.random_normal([2,3]),tf.float32)

em=tf.nn.embedding_lookup(a,[[0,1],[0,1]])
p1=tf.nn.embedding_lookup(b,[[0,1],[0,1]])
d=tf.expand_dims(tf.concat([em,p1],-1),-1)


with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    print('a\n',sess.run(a))

    print('em\n',sess.run(em))
    print('p1\n', sess.run(p1))
    print('d\n',sess.run(d))




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值